Math, asked by mamahodiombath, 2 days ago

The value of 2(sin ^4 30°+ cos ^4 60°) - (tan^2 60°+ cot^2 45°) + 3cosec²60° is​

Answers

Answered by amansharma264
22

EXPLANATION.

Evaluate :

⇒ 2(sin⁴30° + cos⁴60°) - (tan²60° + cot²45°) + 3cosec²60°.

As we know that,

Formula of :

⇒ sin30° = 1/2.

⇒ cos60° = 1/2.

⇒ tan60° = √3.

⇒ cot45° = 1.

cosec60° = 2/√3.

Using this formula in the equation, we get.

⇒ 2[(1/2)⁴ + (1/2)⁴] - [(√3)² + (1)²] + 3(2/√3)².

⇒ 2[1/16 + 1/16] - [3 + 1] + 3[4/3].

⇒ 2[2/16] - [4] + [4].

⇒ [4/16] - [4] + [4].

⇒ 1/4 - 4 + 4.

⇒ 1/4.

Answered by diwanamrmznu
9

given★

  • 2(sin ^4 30°+ cos ^4 60°) - (tan^2 60°+ cot^2 45°) + 3cosec²60°

solution

  • \star\purple{2(sin ^4 30°+ cos ^4 60°) - (tan^2 60°+ cot^2 45°) + 3cosec²60°} --------(1)

  • we know that value of

  •  \sin(30)  =  \frac{1}{2}  \\  \\  \cos(60)  =  \frac{1}{2}  \\  \\  \tan(60)  =  \sqrt{3}  \\  \\   \cot(45 )  = 1 \\  \\  \cosec(30)  =  \frac{2}{ \sqrt{3} }
  • ------------(2)

question according

  • eq(2) value put on eq (1)

  • 2( (\frac{1}{2})  {}^{4}  +(  \frac{1}{2} ) {}^{4} ) - (( \sqrt{3}) {}^{2}  + 1 {}^{2} ) + 3( \frac{2}{ \sqrt{3} }) {}^{2}

  • 2( \frac{1}{16}  +  \frac{1}{16} ) - (3 + 1) + 3 \times  \frac{4}{3}

  • 2( \frac{2}{16}) - 4 + 4

  • 2 \times  \frac{1}{8}

  •  \frac{1}{4}  \\

____________________________

answer

  • 1/4

______________________________

I hope it helps you

Similar questions