The value of 2(sin ^4 30°+ cos ^4 60°) - (tan^2 60°+ cot^2 45°) + 3cosec²60° is
Answers
Answered by
22
EXPLANATION.
Evaluate :
⇒ 2(sin⁴30° + cos⁴60°) - (tan²60° + cot²45°) + 3cosec²60°.
As we know that,
Formula of :
⇒ sin30° = 1/2.
⇒ cos60° = 1/2.
⇒ tan60° = √3.
⇒ cot45° = 1.
cosec60° = 2/√3.
Using this formula in the equation, we get.
⇒ 2[(1/2)⁴ + (1/2)⁴] - [(√3)² + (1)²] + 3(2/√3)².
⇒ 2[1/16 + 1/16] - [3 + 1] + 3[4/3].
⇒ 2[2/16] - [4] + [4].
⇒ [4/16] - [4] + [4].
⇒ 1/4 - 4 + 4.
⇒ 1/4.
Answered by
9
given★
- 2(sin ^4 30°+ cos ^4 60°) - (tan^2 60°+ cot^2 45°) + 3cosec²60°
solution
- --------(1)
- we know that value of
- ------------(2)
question according
- eq(2) value put on eq (1)
____________________________
answer
- 1/4
______________________________
I hope it helps you
Similar questions