Math, asked by KevinBelieber6935, 5 hours ago

The value of 2(sin2 45°+ cot2 30°) – 6(cos2 45°— tan2 30°) is

Answers

Answered by hotelcalifornia
10

To find:

The value of 2(sin^{2}  45 + cot^{2}  30 ) - 6(cos^{2} 45 - tan^{2} 30)

Step-by-step explanation:

2(sin^{2}  45 + cot^{2}  30 ) - 6(cos^{2} 45 - tan^{2} 30)

= 2((\frac{1}{\sqrt{2} } )^{2} + (\sqrt{3}) ^{2} ) - 6 ((\frac{1}{\sqrt{2} } )^{2} - (\frac{1}{\sqrt{3} } )^{2})

= 2(\frac{1}{2} + \frac{3}{1} ) - 6(\frac{1}{2} - \frac{1}{3} )

= 2(\frac{7}{2} ) - 6(\frac{1}{6} )

= 7-6\\\\

= 1

Answer:

Therefore, the value of 2(sin^{2}  45 + cot^{2}  30 ) - 6(cos^{2} 45 - tan^{2} 30) is 1

Answered by Tanishq2806
13

chk the attachment…………

Attachments:
Similar questions