The value of 2 sin2A + 4 sec2 A + 5 cot2 A + 2 cos2A – 4 tan2 A – 5
cosec2 A is
Answers
Answered by
0
The value of 2sin²A + 4sec²A + 5cot²A + 2cos²A - 4tan²A - 5cosec²A is 1.
The options are a) 0 b) 1 c) 2 d) 3
Explanation:
The Trigonometric identities are:
i ) sin²A + cos²A = 1
ii ) sec²A - tan² A = 1
iii ) cot²A-cosec²A = -1
Substituting these values in the given equation,
⇒ 2sin²A + 4sec²A + 5cot²A + 2cos²A - 4tan²A - 5cosec²A
By combining the values according to the trigonometric identities, the equation can be rewritten as
⇒ 2(sin²A+cos²A) + 4(sec²A-tan²A) + 5( cot²A - cosec²A )
⇒ 2 × 1 + 4 × 1 + 5 × ( -1 ) ----------[ the values are substituted ]
⇒ 2 + 4 - 5
⇒ 6 - 5
= 1
Therefore, the value of 2sin²A + 4sec²A + 5cot²A + 2cos²A - 4tan²A - 5cosec²A is 1 .
Similar questions