Math, asked by divyasudhagvm, 1 year ago

The value of (2+tan^2x+cot^2x)/(secx*cosecx) is equal to?

1. cosx*sinx
2. secx*cosecx
3. cotx
4. tanx

Answers

Answered by msom18
4

Answer:

2) secx* cosecx

Step-by-step explanation:

(2+ tan^2 X + cot^2 X) / (secx* cosecx)

={2+ (Sec^2 X - 1) +( cosec^2 X- 1) }/ ( secx* cosecx)

={sec^2 X. + cosec^2 X }/ ( secx* cosecx)

=SecX/ Cosecx + cosecx/secx

=tanx + cotx

=

 \frac{ { \sin(x) }^{2} +  { \cos(x) }^{2}  }{sinx. \cos(x) }

=cosecx * secx [Ans]

Hope it will help you. Mark it Brainliest Answer.

Thank you.

Answered by harendrachoubay
3

The value of \dfrac{2+\tan^2x+\cot^2x}{\sec x\times \csc x} is option 2) \cos x.\csc x.

Step-by-step explanation:

We have,

\dfrac{2+\tan^2x+\cot^2x}{\sec x\times \csc x}

To find, the value of \dfrac{2+\tan^2x+\cot^2x}{\sec x\times \csc x}=?

\dfrac{2+\tan^2x+\cot^2x}{\sec x\times \csc x}

=\dfrac{2(\tan x)(\cot x)+\tan^2x+\cot^2x}{\sec x\times \csc x}

Using identity,

\tan x.\cot x=1

=\dfrac{(\tan x+\cot x)^2}{\sec x\times \csc x}

[ ∵ (a+b)^{2} =a^{2}+b^{2} +2ab]

=\dfrac{(\tan x+\dfrac{1}{\tan x})^2}{\sec x\times \csc x}

=\dfrac{(\dfrac{\tan^2 x+1}{\tan x})^2}{\sec x\times \csc x}

=\dfrac{(\dfrac{\sec^2 x}{\tan x})^2}{\sec x\times \csc x}

Using trigonometric identity,

\sec^2 A=\tan^2 A+1

=\dfrac{\dfrac{\sec^4 x}{\tan^2 x}}{\sec x\times \csc x}

=\dfrac{1}{\cos^4 x}\times \dfrac{\cos^2 x}{\sin^2 x} \times \cos x.\sin x

=\dfrac{1}{\cos x}\times \dfrac{1}{\sin x}

=\cos x.\csc x

Hence, the value of \dfrac{2+\tan^2x+\cot^2x}{\sec x\times \csc x} is option 2) \cos x.\csc x.

Similar questions