Math, asked by sebestin, 7 months ago

The value of 2nP2+nPn-1 is:

Answers

Answered by pulakmath007
3

 \sf  {}^{2n} P_2 + {}^{n} P_{n - 1} = (4 {n}^{2} - 2n )+ n!

Given :  \sf  {}^{2n} P_2 + {}^{n} P_{n - 1}

To find : The value

Solution :

Here the given expression is

 \sf  {}^{2n} P_2 + {}^{n} P_{n - 1}

We simplify it as below

 \sf  {}^{2n} P_2 + {}^{n} P_{n - 1}

\displaystyle \sf{  =  \frac{(2n)!}{(2n - 2)!}   + \frac{n!}{(n - n + 1)!} }

\displaystyle \sf{  =  \frac{2n(2n - 1)(2n - 2)!}{(2n - 2)!}   + \frac{n!}{1!} }

\displaystyle \sf{  =  2n(2n - 1)+ n! }

\displaystyle \sf{  = (4 {n}^{2} - 2n )+ n! }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. IF 1/1!9!+1/3!7!+1/5!5!+1/7!3!+1/9!=2^n /10! then n=?

https://brainly.in/question/20427754

2. If (1+x+x2)n = a0 +a1x +a2x2 + a3x3+ ...+ a2nx2n,show thata0+a3+a6 + .... = 3n-1

https://brainly.in/question/8768959

Similar questions