Math, asked by Tinshu1, 2 months ago

The value of 2sin 170° cos40°cos20° is equal to-​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Consider,

\rm :\longmapsto\:2 \: sin170 \degree \: cos40\degree \: cos20\degree \:  -  - (1)

 \rm \:  =  \: 2sin(90\degree \:  + 80\degree \: )cos40\degree \: cos20\degree \:

 \rm \:  =  \: 2cos80\degree \: cos40\degree \: cos20\degree \:

 \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \boxed{ \bf \: \because \:  sin(90\degree \:  + x) = cosx}

 \rm \:  =  \: 2cos20\degree \: cos40\degree \: cos80\degree \:

 \rm \:  = 2 \: cos20\degree \: cos(60\degree \:  - 20\degree \: )cos(60\degree \:  + 20\degree \: )

 \rm \:  =  \: 2 \times \dfrac{1}{4} cos( \: 3 \times 20\degree \: )

 \:  \boxed{\blue{\sf \: \because \: cosx \: cos(60\degree \:  - x) \: cos(60\degree \:  + x)= \dfrac{1}{4} cos3x}}

 \rm \:  =  \: \dfrac{1}{2}  \times cos60\degree \:

 \rm \:  =  \: \dfrac{1}{2}  \times \dfrac{1}{2}

 \rm \:  =  \: \dfrac{1}{4}

\bf\implies \:2sin170\degree \: cos40\degree \: cos20\degree \:  = \dfrac{1}{4}

Additional Information :-

Trigonometry Formulas

sin(−θ) = −sin θ

cos(−θ) = cos θ

tan(−θ) = −tan θ

cosec(−θ) = −cosecθ

sec(−θ) = sec θ

cot(−θ) = −cot θ

Product to Sum Formulas

sin x sin y = 1/2 [cos(x–y) − cos(x+y)]

cos x cos y = 1/2[cos(x–y) + cos(x+y)]

sin x cos y = 1/2[sin(x+y) + sin(x−y)]

cos x sin y = 1/2[sin(x+y) – sin(x−y)]

Sum to Product Formulas

sin x + sin y = 2 sin [(x+y)/2] cos [(x-y)/2]

sin x – sin y = 2 cos [(x+y)/2] sin [(x-y)/2]

cos x + cos y = 2 cos [(x+y)/2] cos [(x-y)/2]

cos x – cos y = -2 sin [(x+y)/2] sin [(x-y)/2]

Sum or Difference of angles

cos (A + B) = cos A cos B – sin A sin B

cos (A – B) = cos A cos B + sin A sin B

sin (A+B) = sin A cos B + cos A sin B

sin (A -B) = sin A cos B – cos A sin B

tan(A+B) = [(tan A + tan B)/(1 – tan A tan B)]

tan(A-B) = [(tan A – tan B)/(1 + tan A tan B)]

cot(A+B) = [(cot A cot B − 1)/(cot B + cot A)]

cot(A-B) = [(cot A cot B + 1)/(cot B – cot A)]

cos(A+B) cos(A–B)=cos^2A–sin^2B=cos^2B–sin^2A

sin(A+B) sin(A–B) = sin^2A–sin^2B=cos^2B–cos^2A

Multiple and Submultiple angles

sin2A = 2sinA cosA = [2tan A /(1+tan²A)]

cos2A = cos²A–sin²A = 1–2sin²A = 2cos²A–1= [(1-tan²A)/(1+tan²A)]

tan 2A = (2 tan A)/(1-tan²A)

Sign of Trigonometric ratios in Quadrants

sin (90°-θ)  =  cos θ

cos (90°-θ)  =  sin θ

tan (90°-θ)  =  cot θ

csc (90°-θ)  =  sec θ

sec (90°-θ)  =  csc θ

cot (90°-θ)  =  tan θ

sin (90°+θ)  =  cos θ

cos (90°+θ)  =  -sin θ

tan (90°+θ)  =  -cot θ

csc (90°+θ)  =  sec θ

sec (90°+θ)  =  -csc θ

cot (90°+θ)  =  -tan θ

sin (180°-θ)  =  sin θ

cos (180°-θ)  =  -cos θ

tan (180°-θ)  =  -tan θ

csc (180°-θ)  =  csc θ

sec (180°-θ)  =  -sec θ

cot (180°-θ)  =  -cot θ

sin (180°+θ)  =  -sin θ

cos (180°+θ)  =  -cos θ

tan (180°+θ)  =  tan θ

csc (180°+θ)  =  -csc θ

sec (180°+θ)  =  -sec θ

cot (180°+θ)  =  cot θ

sin (270°-θ)  =  -cos θ

cos (270°-θ)  =  -sin θ

tan (270°-θ)  =  cot θ

csc (270°-θ)  =  -sec θ

sec (270°-θ)  =  -csc θ

cot (270°-θ)  =  tan θ

sin (270°+θ)  =  -cos θ

cos (270°+θ)  =  sin θ

tan (270°+θ)  =  -cot θ

csc (270°+θ)  =  -sec θ

sec (270°+θ)  =  cos θ

cot (270°+θ)  =  -tan θ

Similar questions