Math, asked by supriyabhakta93, 6 months ago

the value of 2sin^2 30 -3 cos^2 45 + tan^2 60 + 3sin^2 90​

Answers

Answered by Asterinn
7

 \implies2 { \sin }^{2} 30\degree - 3 { \cos }^{2} 45\degree +  { \tan }^{2} 60\degree + 3 { \sin }^{2} 90\degree

Now put :-

  • sin30° = 1/2

  • Cos 45° = 1/√2

  • tan 60° = √3

  • sin90° = 1

 \implies2 {  (\dfrac{1}{2}) }^{2} - 3 { ( \dfrac{1}{ \sqrt{2} } ) }^{2}  +  {  (\sqrt{3} ) }^{2} + 3 {( 1) }^{2}

 \implies(2  \times \dfrac{1}{4}) - 3  ( \dfrac{1}{2 } )+  {3} + 3

 \implies( \dfrac{1}{2}) -  ( \dfrac{3}{2 } )+  6

\implies ( \dfrac{1 - 3}{2 } )+  6

\implies ( \dfrac{ - 2}{2 } )+  6

\implies  - 1 +  6

\implies  5

Answer : 5

_____________________

Trigonometric Table :-

\begin{array}{ |c |c|c|c|c|c|} \bf\angle A &   \bf{0}^{ \circ} &  \bf{30}^{ \circ} &   \bf{45}^{ \circ}  &  \bf{60}^{ \circ} &   \bf{90}^{ \circ}  \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3} }{2} &1 \\  \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\  \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }& 1 &  \sqrt{3}  & \rm Not \: De fined \\  \\ \rm cosec A &  \rm Not \: De fined & 2&  \sqrt{2}  & \dfrac{2}{ \sqrt{3} } &1 \\  \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }&  \sqrt{2}  & 2 & \rm Not \: De fined \\  \\ \rm cot A & \rm Not \: De fined &  \sqrt{3} & 1  &  \dfrac{1}{ \sqrt{3} } & 0 \end{array}

Answered by Mohasin22756
2

Answer:

Ans is 5

Step-by-step explanation:

can refer the attachment

Attachments:
Similar questions