Math, asked by parvathyrb, 1 year ago

the value of(3^x×9^x+1) ÷ (3^x-1×9^x-1) is

choices: 81,243,2,9

answer along with steps


pls fast

Answers

Answered by siddhartharao77
3
Given Equation is  \frac{3^x * 9^{x+1} }{ 3^{x-1}* 9^{x-1} }

                             =  \frac{3^{x - (x - 1) *  9^{x+1}  } }{ 9^{x-1} }

                             =  \frac{ 3^{1} *  9^{x+1}  }{ 9^{x-1} }

                             = 3 *  9^{(x+1) - (x-1)}

                             = 3 * 9^2

                             = 3 * 81

                             = 243.


Hope this helps!

siddhartharao77: Thank You
kumarshab1: thanx for me bhai
Answered by wifilethbridge
1

Answer:

243

Step-by-step explanation:

Given : \frac{3^x \times 9^{x+1}}{3^{x-1} \times 9^{x-1}}

Solution:

\frac{3^x \times 9^{x+1}}{3^{x-1} \times 9^{x-1}}

Using identity :\frac{a^m}{a^n}=a^{m-n}

\Rightarrow 3^{x-x+1} \times 9^{x+1-x+1}

\Rightarrow 3^{1} \times 9^{2}

\Rightarrow 3\times 81

\Rightarrow 243

Hence the value of  \frac{3^x \times 9^{x+1}}{3^{x-1} \times 9^{x-1}} is 243 .

Similar questions