Math, asked by Nirbhay1234, 9 months ago

The value of √32+√48/√8+√12 is equal to​

Answers

Answered by Anonymous
3

Answer:

 \sqrt{32}  +  \sqrt{48}  \div  \sqrt{8}   +  \sqrt{12}  \\  \\  \\  =   \frac{ \sqrt{32}  \times  \sqrt{48} }{ \sqrt{8}  \times  \sqrt{12} }  =   \frac{ \sqrt{8 \times 4} \times \sqrt{12 \times 4}   }{ \sqrt{8} \times  \sqrt{12}  } \\  \\  =  \frac{2 \sqrt{8}  \times 2 \sqrt{12} }{ \sqrt{8}  \times  \sqrt{12} }  =  \frac{2( \sqrt{8}  \times  \sqrt{12} )}{ \sqrt{8} \times  \sqrt{12}  }  =  \\  \\  = 2

please mark me brainlist ✔️✔️✔️

Answered by Salmonpanna2022
1

Step-by-step explanation:

 \bf \underline{Solution-} \\

\textsf{Given}\\

 \sf{ \frac{ \sqrt{32} +  \sqrt{48}  }{ \sqrt{8} +  \sqrt{12}  } } \\

\sf{ =  \frac{ \sqrt{16  \times 2}  +  \sqrt{16 \times 3} }{ \sqrt{4 \times 2}  +  \sqrt{4 \times 3} } } \\

\sf{ = \frac{4 \sqrt{2} + 4 \sqrt{3}  }{2 \sqrt{2} + 2 \sqrt{3}  }  } \\

\sf{ = \frac{4 ( \sqrt{2  } +  \sqrt{3})  }{2( \sqrt{2} +  \sqrt{3}  )}  } \\

\sf{ =  \frac{4}{2} } \\

\sf{ = 2 \:Ans. } \\

Similar questions