Math, asked by jraksheeth, 11 months ago

The value of (√32+ √48)/(√8+ √12) is equal to ____________. √2 2 4 √5

Answers

Answered by charutaspradeep50
2

√32 + √48 /√8 + √12

√4*√8 + √4*√12/√8+√12    (√4*√8=√32,√4 * √12 = √48)

2√8 + 2√12/√8+√12      ( √4=2 )

2(√8+√12)/1(√8+√12)   ( 2 taken common and 1 taken common)

ans = 2/1= 2                 (√8+√12 cancelled out]

Answered by Salmonpanna2022
2

Step-by-step explanation:

 \bf \underline{Solution-} \\

\textsf{Given}\\

 \sf{ \frac{ \sqrt{32} +  \sqrt{48}  }{ \sqrt{8} +  \sqrt{12}  } } \\

\sf{ =  \frac{ \sqrt{16  \times 2}  +  \sqrt{16 \times 3} }{ \sqrt{4 \times 2}  +  \sqrt{4 \times 3} } } \\

\sf{ = \frac{4 \sqrt{2} + 4 \sqrt{3}  }{2 \sqrt{2} + 2 \sqrt{3}  }  } \\

\sf{ = \frac{4 ( \sqrt{2  } +  \sqrt{3})  }{2( \sqrt{2} +  \sqrt{3}  )}  } \\

\sf{ =  \frac{4}{2} } \\

\sf{ = 2 \:Ans. } \\

Similar questions