Math, asked by vijaymsvk2004, 7 months ago

The value of (4-〖sin〗^2 45°)/(cotk tan60°) is 3.5 , What is the value of k? *​

Answers

Answered by tootok
31

Answer

x = 60°

process :-

see the attachment

Attachments:
Answered by pulakmath007
16

SOLUTION

GIVEN

\displaystyle \sf{  \frac{4 -  { \sin}^{2}  {45}^{ \circ} }{ \cot k \tan  {60}^{ \circ} }   = 3.5}

TO DETERMINE

The value of k

EVALUATION

\displaystyle \sf{  \frac{4 -  { \sin}^{2}  {45}^{ \circ} }{ \cot k \tan  {60}^{ \circ} }   = 3.5}

\displaystyle \sf{ \implies \frac{4 -  { \big(  \frac{1}{  \sqrt{2} }  \big)}^{2}  }{ \cot k  \times  \sqrt{3}  }   = 3.5}

\displaystyle \sf{ \implies \frac{4 -   \frac{1}{2}  }{ \cot k  \times  \sqrt{3}  }   = 3.5}

\displaystyle \sf{ \implies \frac{  \frac{8 - 1}{2}  }{ \cot k  \times  \sqrt{3}  }   = 3.5}

\displaystyle \sf{ \implies \frac{  \frac{7}{2}  }{ \cot k  \times  \sqrt{3}  }   = 3.5}

\displaystyle \sf{ \implies \frac{  3.5 }{ \cot k  \times  \sqrt{3}  }   = 3.5}

\displaystyle \sf{ \implies  \cot k  \times  \sqrt{3}  }   =1

\displaystyle \sf{ \implies  \cot k    }   = \frac{1}{ \sqrt{3} }

\displaystyle \sf{ \implies  \cot k    }   = \cot  {60}^{ \circ}

\displaystyle \sf{ \implies  k     =  {60}^{ \circ} }

FINAL ANSWER

Hence the required value of k = 60°

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Value of 3 + cot 80 cot 20/cot80+cot20 is equal to

https://brainly.in/question/17024513

2 . In a triangle, prove that (b+c-a)(cotB/2+cotC/2)=2a×cotA/2

https://brainly.in/question/19793971

Similar questions