The value of 4 × sin x × sin(x + π/3) × sin(x + 2π/3) is
Answers
Answered by
1
Answer:
cos (5pi) = cos (pi + 4pi) = cos pi = - 1
Answered by
3
Step-by-step explanation:
4 * sin x * {sin x * cos π/3 + cos x * sin π/3} * {sin x * cos 2π/3 + cos x * sin 2π/3}
= 4 * sin x * {(sin x)/2 + (√3 * cos x)/2} * {-(sin x)/2 + (√3 *cos x)/2}
= 4 * sin x * {-(sin2 x)/4 + (3 * cos2 x)/4}
= sin x * {-sin2 x + 3 * cos2 x}
= sin x * {-sin2 x + 3 * (1 - sin2 x)}
= sin x * {-sin2 x + 3 - 3 * sin2 x}
= sin x * {3 - 4 * sin2 x}
= 3* sin x - 4sin3 x
= sin 3x
So, 4 * sin x * sin(x + π/3) * sin(x + 2π/3) = sin 3x
Answered on: 2017/09/04 by ExamFear Share on Facebook Share of TwitterReport Abuse
ANSWER THIS QUESTION
Type your Answer here...
ANSWER
YOU CAN CHECK OUR 5-STEP LEARNING PROCESS
Similar questions