Math, asked by omb538, 2 months ago

the value of 4root3-4/root3+1 - 2-root3/2+root3 is. pls tell me quick​

Attachments:

Answers

Answered by stafajul7
5

} [/t</p><p>[tex] \frac{4 \sqrt{3} - 4 }{ \sqrt{3}  + 1}  -   \frac{2 -  \sqrt{3} }{2 +  \sqrt{3} }  =  \frac{8 \sqrt{3}  - 8 + 4 \times 3 - 4 \sqrt{3} - (2 \sqrt{3}   - 3 + 2 -  \sqrt{3)} }{ (\sqrt{3} + 1) \times (2 +  \sqrt{3)}  }  =  \frac{8 \sqrt{3}  - 8 + 12 - 4 \sqrt{3}  -  \sqrt{3}  + 1}{2 \sqrt{3}  + 3 + 2 +  \sqrt{3} }  =  \frac{3 \sqrt{3 }  + 5}{3 \sqrt{3}  + 5}  = 1

ex]

Answered by fariyalatufa001
3

Answer:

The value is 1

Explanation:

Given: The \frac{4\sqrt{3}-4}{\sqrt{3}+1}-\frac{2-\sqrt{3}}{2+\sqrt{3}}

Find: The value of given equation.

Solution:

\frac{4\sqrt{3}-4}{\sqrt{3}+1}-\frac{2-\sqrt{3}}{2+\sqrt{3}}

\frac{(4\sqrt{3}-4)(2+\sqrt{3})-(2-\sqrt{3})(\sqrt{3}+1)}{(\sqrt{3}+1)(2+\sqrt{3})}

\frac{8\sqrt{3}+12-8-4\sqrt{3}-(2\sqrt{3}+2-3-\sqrt{3})}{2\sqrt{3}+3+2+\sqrt{3}}

\frac{3\sqrt{3}+5}{3\sqrt{3}+5}=1

#SPJ3

Similar questions