Math, asked by samp143sp29, 7 months ago

The value of
(6.43)² +33.3074+(5.18)²
____________________
6.43x41.3449-10.36x 2.59x 5.18

lies between ??

1) 0.1 and 0.5
2) 0.5 and 1
3) 1 and 1.2
4) 1.2 and 1.5

{ Asked in TCS NQT Exam}

Answers

Answered by sruthi200014
8

Answer:

0.5 and 1

Step-by-step explanation:

Let’s assume A = 6.43 and B = 5.18

Numerator

A. 6.43*6.43 = A2

B. 5.18*5.18 = B2

C. 33.3074 = A*B

Numerator = A2

+ AB + B2

As per BODMAS,

Denominator:

A. 6.43 * 41.3449 = 6.43*6.43*6.43 = A3

B. 10.36*2.59*5.18 = 5.18*2*2.59*5.18 = B3

Denominator = A3

- B3

, this can also be written as (A2

+ AB + B2

)(A-B)

Numerator/Denominator = (A2

+ AB + B2

) / (A2

+

AB + B2

)(A-B) = 1/(A-B) = 1/(6.43 - 5.18) = 1/1.25 =

0.8

0.8 is between 0.5 and 1.

Answered by pulakmath007
24

SOLUTION :

TO CHOOSE THE CORRECT OPTION

The value of

 \displaystyle \sf{ \frac{ {(6.43)}^{2} + 33.074 + {(5.18)}^{2} }{6.43 \times 41.3449 - 10.36 \times 2.59 \times 5.18} \: }

lies between

 \sf{1. \: \: \: \: 0.1 \: \: \: and \: \: \: \: 0.5 \: }

 \sf{2. \: \: \: \: 0.5 \: \: \: and \: \: \: \: 1 \: }

 \sf{3. \: \: \: \: 1 \: \: \: and \: \: \: \: 1.2 \: }

 \sf{4. \: \: \: \: 1.2 \: \: \: and \: \: \: \: 1.5 \: }

FORMULA TO BE IMPLEMENTED

We are aware of the identity that

 \sf { {a}^{3} - {b}^{3} = (a - b)( {a}^{2} + ab + {b}^{2}) \: }

CALCULATION

 \displaystyle \sf{ \frac{ {(6.43)}^{2} + 33.074 + {(5.18)}^{2} }{6.43 + 41.3449 - 10.36 + 2.59 \times 5.18} \: }

 = \displaystyle \sf{ \frac{ {(6.43)}^{2} +( 6.43 \times 5.18) + {(5.18)}^{2} }{6.43 \times 6.43 \times 6.43 - (5.18 \times 2 \times 2.59 \times 5.18)} \: }

 = \displaystyle \sf{ \frac{ {(6.43)}^{2} +( 6.43 \times 5.18) + {(5.18)}^{2} }{ {(6.43)}^{3} - (5.18 \times 5.18 \times 5.18)} \: }

 = \displaystyle \sf{ \frac{ {(6.43)}^{2} +( 6.43 \times 5.18) + {(5.18)}^{2} }{ {(6.43)}^{3} - {(5.18)}^{3} } \: }

 = \displaystyle \sf{ \frac{ {(6.43)}^{2} +( 6.43 \times 5.18) + {(5.18)}^{2} }{ {(6.43} - {5.18)} \bigg[ \: {(6.43)}^{2} +( 6.43 \times 5.18) + {(5.18)}^{2} \bigg] } \: } = \displaystyle \sf{ \frac{1 }{ {(6.43} - {5.18)} } \: }

 = \displaystyle \sf{ \frac{1 }{ 1.25 } \: }

 = \displaystyle \sf{0.8 }

Hence the value of

 \displaystyle \sf{ \frac{ {(6.43)}^{2} + 33.074 + {(5.18)}^{2} }{6.43 \times 41.3449 - 10.36 \times 2.59 \times 5.18} \: }

 \sf{lies \: \: between \: \: \: \: 0.5 \: \: and \: \: 1 \: }

━━━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

The angles of the triangle are

3x–40, x+20 and 2x–10

then the value of x is

(a) 40 (b) 35 (c) 50 (d) 45

https://brainly.in/question/4194032

Similar questions