Math, asked by mathslover7, 1 year ago

The value of √7^log5 - √5^log7 is equal to? ​

Answers

Answered by Anonymous
10

Answer:

√7^log5 - √5^log7 = 0.

❤️Hope it will help you.❤️

Attachments:
Answered by Anonymous
49

SOLUTION

 =  >  \sqrt{7}  {}^{(log5)}  -  \sqrt{5}  {}^{(log7)}  \\  =  > (7 {}^{ (\frac{1}{2} ) {}^{(log5)} }  - (5 {}^{( \frac{1}{2}) }  {}^{(log7)}  \\  =  > (7) {}^{( (\frac{1}{2})log5) } - (5) {}^{(( \frac{1}{2})log7) }  \\  =  > (7) {}^{(log \sqrt{5}) }  - (5) {}^{(log \sqrt{7}) }   \\  =  >( 10 {}^{(log7) {}^{(log5)} })  - (10 {}^{(log5) {}^{(log7)} } ) \\  =  > 10 {}^{(log7 \times log5)}  - 10 {}^{(log5 \times log7)}  \\  =  > 10 {}^{(log5 \times log7)}  - 10  {}^{(log5 \times log7)}  \\  \\  =  > 0

hope it helps ☺️

Similar questions