Math, asked by ak8228407, 9 months ago

the value of 8^1/2×8^1/4×8.....infinity​

Answers

Answered by BrainlyPopularman
18

GIVEN :

  \\ \bf \implies  {8}^{ \frac{1}{2}}  \times  {8}^{ \frac{1}{4}}  \times  {8}^{ \frac{1}{8} }  \times .......... \infty \\

TO FIND :

• Value = ?

SOLUTION :

Let the series –

  \\ \bf \implies p =  {8}^{ \frac{1}{2}}  \times  {8}^{ \frac{1}{4}}  \times  {8}^{ \frac{1}{8} }  \times .......... \infty \\

• Using identity –

  \bf \implies {a}^{b} \times{a}^{c}  =  {a}^{b + c}

• So that –

  \\ \bf \implies p =  {8}^{  \left\{\frac{1}{2} +  \frac{1}{4} +  \frac{1}{8} + ....... \infty\right \}}\\

• We also know that sum of infinite terms of G.P. –

  \\ \implies \large{ \boxed{ \bf s =  \dfrac{a}{1 - r}}} \\

• Here –

  \\ \bf \:  \: {\huge{.}} \:  \: a =  \dfrac{1}{2}  \\

  \\ \bf \:  \: {\huge{.}} \:  \: d=  \dfrac{1}{2}  \\

• So that –

  \\ \bf \implies p =  {8}^{\left\{ \dfrac{ \frac{1}{2} }{1 -  \frac{1}{2} }  \right\}}\\

  \\ \bf \implies p =  {8}^{\left\{  \cancel\dfrac{ \frac{1}{2} }{\frac{1}{2} }  \right\}}\\

  \\ \bf \implies p =  {8}^{\left(1\right)}\\

  \\ \large \implies{ \boxed{ \bf p =8}}\\

Answered by Anonymous
7

Given :-

  •  {8}^{ \frac{1}{2} }  \times  {8}^{ \frac{1}{4} }  \times  {8}^{ \frac{1}{8} }  -  -  -  -  \infty

Solution :-

Let the series →

: \implies \:  p =  {8}^{ \frac{1}{2} }  \times  {8}^{ \frac{1}{4} }  \times  {8}^{ \frac{1}{8} }  -  -  -  -  \infty  \\

We know that :-

  •  {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}

So,

: \implies \: p =   {8}^{ \big(\frac{1}{2} +  \frac{1}{4}   +  \frac{1}{8} -  -  -  \infty   \big)}  \\

Now,

The sum of infinity terms in G.P. -

s \:  =  \frac{a}{1 - d}  \\

Where 'a' is the first term and 'd' is the difference between each term.

So,

here ,

 \star \: a \:   =  \frac{1}{2}  \\  \\  \star \: d =  \frac{1}{2}

: \implies \: p =  {8}^{  \big(\frac{ \frac{1}{2} }{1 -  \frac{1}{2} } \big) }  \\  \\ : \implies \: p =  {8}^{ \big( \frac{ \frac{1}{2} }{ \frac{2 - 1}{2} }  \big)}  \\  \\ : \implies \: p =  {8}^{ \big( \frac{ \frac{1}{2} }{ \frac{1}{2} }  \big)}  \\  \\ : \implies \: p =  {8}^{1}  \\  \\ : \implies \boxed{ p = 8}

Hence, the value of given series is 8.

Similar questions