the value of a cube plus b cube plus c cube minus 3 ABC if a + b + c is equals to 15 and a b + BC + CA is equal to 74
Answers
Given: a + b + c = 15 and ab + bc + ca = 74
To find: a^3 + b^3 + c^3
Identities to be used:
1. a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)
2. (a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca
Answer:
a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)
Since we don't have the value for a^2 + b^2 + c^2, we will be using the identity (a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca
(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca
15^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)
225 = a^2 + b^2 + c^2 + 2*74
225 = a^2 + b^2 + c^2 + 148
a^2 + b^2 + c^2 + 148 = 225
a^2 + b^2 + c^2 = 225 - 148
a^2 + b^2 + c^2 = 77
Now we know the value of a^2 + b^2 + c^2, so we will go back to using the first identity to find the value of a^3 + b^3 + c^3 - 3abc
a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)
a^3 + b^3 + c^3 - 3abc = 15 * (a^2 + b^2 + c^2 - (ab + bc + ca))
a^3 + b^3 + c^3 - 3abc = 15*(77 - 74)
a^3 + b^3 + c^3 - 3abc = 15*3
a^3 + b^3 + c^3 - 3abc = 45
Hope it helps :)