Math, asked by Anonymous, 7 months ago

The value of a for which one root of the quadratic equations (a²-5a+3)x² + (3a-2)x+2 = 0 is twice as large other is

Answers

Answered by amansharma264
44

EXPLANATION.

one roots of the quadratic equation

=> ( a² - 5a + 3 )x² + ( 3a - 2 )x + 2 = 0

=> twice as larger other.

 \sf :   \implies \: let \: we \: assume \: that \:  \alpha and \: 2 \alpha  \: be \: the \: roots \: of \: equation. \\  \\ \sf :   \implies \: sum \: of \: roots \: of \: quadratic \: equation \:  =  \alpha  +  \beta  =  \frac{ - b}{a}  \\  \\ \sf :   \implies \:  \alpha  + 2 \alpha  = 3 \alpha  =  \frac{ 1 - 3 a }{ {a}^{2}  - 5a + 3}  \:  \:  \: ......(1)

\sf :   \implies \: product \: of \: quadratic \: equation \:  =  \alpha  \beta  =  \dfrac{c}{a}  \\  \\ \sf :   \implies \:  \alpha (2 \alpha ) = 2 { \alpha }^{2}  =  \frac{2}{ {a}^{2}  - 5a + 3}  \:  \:  \:  \: ......(2)

\sf :   \implies \: on \: squaring \: equation \: (1) \:  \: we \:  \: get \\  \\ \sf :   \implies \: 9 { \alpha }^{2}  =  \frac{( 1- 3a) {}^{2} }{( {a}^{2}  - 5a + 3) {}^{2} }  \\  \\ \sf :   \implies \: dividing \: equation \: (1) \:  \: and \:  \: (2) \:  \: we \:  \: get

\sf :   \implies \:  \dfrac{9 { \alpha }^{2} }{2 { \alpha }^{2} }  =  \dfrac{(1 - 3a) {}^{2} }{( {a}^{2} - 5a + 3) {}^{2}  }  \times  \dfrac{( {a}^{2}  - 5a + 3)}{2}  \\  \\ \sf :   \implies \:  \frac{9}{2}  =  \frac{(1 - 3a) {}^{2} }{2( {a}^{2} - 5a + 3) }  \\  \\ \sf :   \implies \: 9( {a}^{2}  - 5a + 3) = (1 - 3a) {}^{2}

\sf :   \implies \: 9 {a}^{2}  - 45a + 27 = 1 + 9 {a}^{2}  - 6a \\  \\ \sf :   \implies \: 26 =  39a \\  \\ \sf :   \implies \: a \: =  \frac{2}{3}

Answered by misscutie94
28

Answer:

✳️ Given ✳️

✒️ The value of 'a' for which one root of the quadratic equation ( - 5a + 3) + (3a - 1)x + 2 = 0

is twice as large .

✳️ To Find ✳️

✒️ What is the value of a.

✳️ Solution ✳️

✍️ Let the roots be \sf\alpha{_1}\beta, given \beta = 2a

\implies 3\alpha = \dfrac{-(3a - 1)}{a² - 5a + 3} ...... Equation no 1 ( Sum of roots)

\implies 2\alpha² = \dfrac{2}{a² - 5a + 3} ..... Equation no 2 (Product of roots)

\implies \dfrac{(3a - 1)²}{(a² - 5a + 3)²} = \dfrac{9}{a² - 5a + 3}

\implies \dfrac{(3a - 1)² - 9(a² - 5a + 3)}{(a² - 5a + 3)²} = 0

\implies 9a² - 6a + 1 - 9a² + 45a - 27 = 0

\implies 39a - 26 = 0

\implies 39a = 26

\implies a = \sf\dfrac{\cancel{26}}{\cancel{39}}

\dashrightarrow a = \dfrac{2}{3}

\therefore The value of a = \dfrac{2}{3}

__________________________

Similar questions