Math, asked by siva8746, 11 months ago

The value of a, if the points (3,4) and (7,1) are eqidistant from the point (a,0)​

Answers

Answered by mddilshad11ab
36

Step-by-step explanation:

given

point

A=(3,4)

O=(7,1)

now according to formula

AO=

ao = \sqrt{(3 - 7) {}^{2} + (4 - 1) {}^{2}  }  \\  =  \sqrt{( - 4) {}^{2}  + (3) {}^{2} }  \\  =  \sqrt{16 + 9}  \\  =  \sqrt{25}  \\  = 5units

I hope it will be helpful to you dear

Answered by AyushVarma1191
0

Answer:

a =  \frac{25}{8}

Step-by-step explanation:

Let, p=(3,4) and r=(7,1) and q=(a,0)

d(pq) =  \sqrt{ {(3 - a)}^{2} +  {(4 - 0)}^{2}  }  \\ d(pq) =  \sqrt{ {(3 - a)}^{2} + 16 }  \\  \\ d(qr) =  \sqrt{ {(a - 7)}^{2}  +  {(0 - 1)}^{2} }  \\ d(qr) =  \sqrt{ {(a - 7)}^{2} + 1 }  \\  \\ by \: given \: condition \\ d(pq) = d(qr) \\  \sqrt{ {(3 - a)}^{2}  + 16}  =  \sqrt{ {(a - 7)}^{2} + 1 }  \\ squaring \: both \: side \\  {(3 - a)}^{2}  + 16 =  {(a - 7)}^{2} + 1 \\  {a}^{2}  - 6a  + 9 + 16 = {a}^{2}  - 14a  + 49 + 1 \\  {a }^{2} -  {a}^{2} - 6a + 14a = 50 - 25 \\ 8a = 25 \\ a =  \frac{25}{8}

PLEASE MARK AS BRANILIST

Similar questions