Math, asked by chaurasvinay12, 4 months ago

the value of a machine worth rupees 500000 is depreciating at the rate of 10% every year. in how many years will its value be reduced to rupees 364500?​

Answers

Answered by AestheticSoul
21

Given :

  • Value of a machine = Rs. 5,00,000
  • Rate of depreciation = 10 %
  • Value of machine reduces to = Rs. 3,64,500

To find :

  • Number of years in which its value will get reduced

Knowledge required :-

  • Formula to calculate amount when the value of a thing depreciates -

⠀⠀⠀\boldsymbol{Amount = P\Bigg[1 -  \dfrac{r}{100}\Bigg]^{n}}

where,

  • P = Principal
  • r = The rate of depreciation
  • n = Time

Solution :

Substitute the given values in the formula of amount.

We have,

  • Amount = Rs. 3,64,500
  • Principal = Rs. 5,00,000
  • r = 10%
  • n = ?

  \\  : \implies\bold{364500 = 500000 \Bigg[1 -  \dfrac{10}{100}\Bigg]^{n}}

 \\ : \implies \bold{ \dfrac{364500}{500000 } = \Bigg[1 -  \frac{10}{100} \Bigg]^{n}}

 \\ : \implies \bold{ \dfrac{3645 \not0 \not0}{5000 \not0 \not0 } = \Bigg[1 -  \frac{10}{100} \Bigg]^{n} }

 \\ : \implies \bold{ \dfrac{3645}{5000} = \Bigg[1 -  \frac{10}{100} \Bigg]^{n} }

\\ : \implies \bold{ \dfrac{729}{1000} = \Bigg[1 -  \frac{10}{100} \Bigg]^{n} }

 \\ : \implies \bold{   \Bigg(\dfrac{9}{10}  \Bigg)^{3} = \Bigg[1 -  \frac{10}{100} \Bigg]^{n} }

 \\ : \implies \bold{   \Bigg(\dfrac{9}{10}  \Bigg)^{3} = \Bigg[1 -  \frac{1 \not0}{10 \not0} \Bigg]^{n} }

\\ : \implies \bold{   \Bigg(\dfrac{9}{10}  \Bigg)^{3} = \Bigg[1 -  \frac{1}{10} \Bigg]^{n} }

\\ : \implies \bold{   \Bigg(\dfrac{9}{10}  \Bigg)^{3} = \Bigg[  \frac{10 - 1}{10} \Bigg]^{n} }

\\ : \implies \bold{   \Bigg(\dfrac{9}{10}  \Bigg)^{3} = \Bigg[  \frac{9}{10} \Bigg]^{n} }

Bases are equal, powers are equal.

\\ : \implies \bold{3 = n}

  \\ \therefore \underline{ \ \sf{ \pmb{Number  \:  \: of  \:  \: years \:  \:  in  \:  \: which \:  its  \:  \: value  \:  \: will  \:  \: get  \:  \: reduced = 3 \:  \: years}}}

━━━━━━━━━━━━━━━━━

Some related formulae :-

\bullet \: \: \bold{Simple~Interest = \dfrac{P \times R \times T}{100}}

\bullet \:  \: \bold{C.I. = P \bigg[1 + \dfrac{r}{100} \bigg]^{n}  - P}

\bullet\: \: \bold{Compound~Interest = Amount - Principal}

\bullet\: \: \bold{Amount = Compound~Interest + Principal}

\bullet \: \: \bold{Amount = P \bigg[1 +  \dfrac{r}{100} \bigg]^{n}}

Answered by Anonymous
7

Given:

  • Value of a machine = Rs. 5,00,000
  • Rate of depreciation = 10 %
  • Value of machine reduces to = Rs. 3,64,500

To find:

  • Number of years in which its value will get reduced

Knowledge required :-

Formula to calculate amount when the value of a thing depreciates -

\boldsymbol{Amount = P\Bigg[1 - \dfrac{r}{100}\Bigg]^{n}}

where,

  • P = Principal
  • r = The rate of depreciation
  • n = Time

Solution:

Substitute the given values in the formula of amount.

We have,

  • Amount = Rs. 3,64,500
  • Principal = Rs. 5,00,000
  • r = 10%
  • n = ?

\begin{gathered} \\ : \implies\bold{364500 = 500000 \Bigg[1 - \dfrac{10}{100}\Bigg]^{n}}\end{gathered}

\begin{gathered} \\ : \implies \bold{ \dfrac{364500}{500000 } = \Bigg[1 - \frac{10}{100} \Bigg]^{n}}\end{gathered}

\begin{gathered} \\ : \implies \bold{ \dfrac{3645 \not0 \not0}{5000 \not0 \not0 } = \Bigg[1 - \frac{10}{100} \Bigg]^{n} }\end{gathered}

\begin{gathered}\\ : \implies \bold{ \dfrac{729}{1000} = \Bigg[1 - \frac{10}{100} \Bigg]^{n} }\end{gathered}

\begin{gathered} \\ : \implies \bold{ \Bigg(\dfrac{9}{10} \Bigg)^{3} = \Bigg[1 - \frac{10}{100} \Bigg]^{n} }\end{gathered}

\begin{gathered} \\ : \implies \bold{ \Bigg(\dfrac{9}{10} \Bigg)^{3} = \Bigg[1 - \frac{1 \not0}{10 \not0} \Bigg]^{n} }\end{gathered}

\begin{gathered}\\ : \implies \bold{ \Bigg(\dfrac{9}{10} \Bigg)^{3} = \Bigg[1 - \frac{1}{10} \Bigg]^{n} }\end{gathered}

\begin{gathered}\\ : \implies \bold{ \Bigg(\dfrac{9}{10} \Bigg)^{3} = \Bigg[ \frac{10 - 1}{10} \Bigg]^{n} }\end{gathered}

\begin{gathered}\\ : \implies \bold{ \Bigg(\dfrac{9}{10} \Bigg)^{3} = \Bigg[ \frac{9}{10} \Bigg]^{n} }\end{gathered}

Bases are equal, powers are equal.

\begin{gathered}\\ : \implies \bold{3 = n}\end{gathered}

\begin{gathered} \\ \therefore \underline{ \ \sf{ \pmb{Number \: \: of \: \: years \: \: in \: \: which \: its \: \: value \: \: will \: \: get \: \: reduced = 3 \: \: years}}}\end{gathered}

━━━━━━━━━━━━━━━━━

Some related formulae :-

\bullet \: \: \bold{Simple~Interest = \dfrac{P \times R \times T}{100}}

\bullet \:  \: \bold{C.I. = P \bigg[1 + \dfrac{r}{100} \bigg]^{n}  - P}

\bullet\: \: \bold{Compound~Interest = Amount - Principal}

\bullet\: \: \bold{Amount = Compound~Interest + Principal}

\bullet \: \: \bold{Amount = P \bigg[1 +  \dfrac{r}{100} \bigg]^{n}}

#Be_brainly

keep smiling

⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

Similar questions