Math, asked by asasasas4541, 1 year ago

The value of ∫(ax^3 + bx + c) dx , x ∈ [-2, 2] depends on

Answers

Answered by Swarup1998
16
\boxed{\underline{\textsf{Integration rule :}}}

\bold{\int x^{n}dx = \frac{1}{n+1}x^{n+1}+C}

\textsf{where C is integral constant.}

\boxed{\underline{\textsf{Solution :}}}

\textsf{Now,}\: \bold{I=\int (ax^{3}+bx+c)\:dx}

=\bold{\int ax^{3}\:dx+\int bx\:dx+\int c\:dx}

=\bold{a\int x^{3}\:dx + b\int x\:dx + c\int dx}

=\bold{a\frac{x^{3+1}}{3+1} + b\frac{x^{1+1}}{1+1} + cx}

=\bold{\frac{a}{4}x^{4} + \frac{b}{2}x^{2} + cx}

\textsf{Here, we have not considered integral}
\textsf{constant because it is a Particular}
\textsf{Integral.}

\textsf{Thus,}\:\bold{I_{-2}^{+2}}

=\bold{[\frac{a}{4}x^{4} + \frac{b}{2}x^{2} + cx]_{-2}^{+2}}

=\bold{[\frac{a}{4}(2)^{4} + \frac{b}{2}(2)^{2} + c(2)]}

\bold{-[\frac{a}{4}(-2)^{4} + \frac{b}{2}(-2)^{2} + c(-2)]}

=\bold{(\frac{16a^{4}}{4}+\frac{4b^{2}}{2}+2c)}

\bold{-(\frac{16a^{4}}{4}+\frac{4b^{2}}{2}-2c)}

=\bold{\frac{16a^{4}}{4}+\frac{4b^{2}}{2}+2c}

\bold{-\frac{16a^{4}}{4}-\frac{4b^{2}}{2}+2c}

=\bold{2c+2c}

=\bold{4c}

\to \boxed{\bold{\int_{-2}^{2} (ax^{3}+bx+c)\:dx=4c}}

\therefore \underline{\small{\textsf{the integral's value depends on c only.}}}

duragpalsingh: Good Explanation bro!
Swarup1998: Thanks bro :)
Similar questions