the value of c0/1.3 - c1/2.3 + c2/3.3 - c3/4.3 + ........+(-1)n cn/(n+1).3
Answers
Answered by
1
Step-by-step explanation:
Given The value of c0/1.3 - c1/2.3 + c2/3.3 - c3/4.3 + ........+(-1)n cn/(n+1).3
- Now we have
- So let m = 1/3 (Co/1 – C1/2 + C2/3 – C3/4 +-------------(-1)^n Cn+/ n + 1)
- So (1 – x)^n = Co – C1x + C2x^2 – C3x^3 + C4x^4--------------+ (-1)^n Cnx^n
- So integrating both sides from 0 to 1 we have
- So - (1 – x)^n+1 / n + 1 ]0 to 1 = C1x – C1 x^2/2 + C2 x^3 / 3 +-----(-1)^n Cn x^n + 1 / n + 1 ]0 to 1
- So 1/n + 1 = Co – C1/2 + C2/3 - ----------------+ (- 1)^nCn / n + 1
- Substituting we get
- 1/ 3(n + 1)
Reference link will be
https://brainly.in/question/245120
Similar questions