Math, asked by kulprajwl, 1 day ago

the value of cos 15°?​

Answers

Answered by jyoshnad28
3

Answer:

The value of cos 15° = (√3+1)/2√2.

Answered by AestheticSky
39

 \\ \footnotesize \quad \bullet \quad  \cos (15) =  \cos(60 - 45) \\

We know that,

 \\  \footnotesize \quad \bullet \quad    \underline{\boxed{\rm  \cos(A-B)  =  \cos A. \cos B +  \sin A. \sin B}} \\

Solution:

 \\  \footnotesize \quad \longrightarrow \quad  \cos(60 - 45)  =  \cos (60).  \cos(45)  +  \sin(60) . \sin(45)  \\

\\  \footnotesize \quad \longrightarrow \quad  \cos(60 - 45)  =  \dfrac{1}{2}  \times  \dfrac{1}{ \sqrt{2} }  +  \dfrac{ \sqrt{3} }{2}  \times  \dfrac{1}{ \sqrt{2} }  \\

\\  \footnotesize \quad \longrightarrow \quad  \cos(60 - 45)  =   \dfrac{1}{ 2\sqrt{2} }  +  \dfrac{ \sqrt{3} }{2 \sqrt{2} }    \\

\\  \footnotesize \quad \longrightarrow \quad  \boxed{ {  \cos(60 - 45)  =   \dfrac{1 +  \sqrt{3} }{ 2\sqrt{2} }}}     \\

\\  \footnotesize \quad \therefore \quad  \boxed{ \pink{ \frak{  \cos(15)  =   \dfrac{1 +  \sqrt{3} }{ 2\sqrt{2} } }}} \bigstar  \\

____________________________

Similar questions