the value of cos^2 5^0+cos^2 10^0+cos^2 15 +.....+cos^2 90^0=
Answers
Answered by
4
Let cos(10)=a
cos(50)=b
The question becomes : a2−ab+b2
=a2−2ab+b2+ab
=(a−b)2+ab
Therefore (cos(10)−cos(50))2+cos(10)⋅cos(50)
using ; cosC−cosD=2sinC+D2sinD−C2
Therefore (2sin10+502sin50−102)2+cos(10)⋅cos(50)
=(2sin(30)sin20)2+cos(10)⋅cos(50)
=(sin20)2+cos(10)⋅cos(50)
=(sin20)2+22⋅(cos(10)⋅cos(50))
using ;
2cosacosb=cos(a+b)+cos(a−b)
=(sin20)2+cos(10+50)+cos(50−10)2
=(sin20)2+cos(60)+cos(40)2
=(sin20)2+12+cos(40)2
=(sin20)2+1+2cos(40)4
=(sin20)2+1+cos(40)2×2+cos(40)4
using ; cos2(x)=1+cos(2x)2
=(sin20)2+1+cos(40)2×2cos2(20)/2+cos(40)4
therefore
cos(50)=b
The question becomes : a2−ab+b2
=a2−2ab+b2+ab
=(a−b)2+ab
Therefore (cos(10)−cos(50))2+cos(10)⋅cos(50)
using ; cosC−cosD=2sinC+D2sinD−C2
Therefore (2sin10+502sin50−102)2+cos(10)⋅cos(50)
=(2sin(30)sin20)2+cos(10)⋅cos(50)
=(sin20)2+cos(10)⋅cos(50)
=(sin20)2+22⋅(cos(10)⋅cos(50))
using ;
2cosacosb=cos(a+b)+cos(a−b)
=(sin20)2+cos(10+50)+cos(50−10)2
=(sin20)2+cos(60)+cos(40)2
=(sin20)2+12+cos(40)2
=(sin20)2+1+2cos(40)4
=(sin20)2+1+cos(40)2×2+cos(40)4
using ; cos2(x)=1+cos(2x)2
=(sin20)2+1+cos(40)2×2cos2(20)/2+cos(40)4
therefore
Similar questions