The value of cos 20 + 2sin² 55 – √2 sin65 is
Answers
Answered by
6
Answer:
❀ʀᴇǫᴜɪʀᴇᴅ ᴀɴsᴡᴇʀ:
⟹cos(20°)+2.sin2(55o)−2–√sin(65°)
Using 2.θ=1−cos(2θ)
⟹cos(20°)+1−cos(110°)−2–√sin(65°)
⟹cos(20°)+1+sin(20°)−2–√sin(65°)
⟹cos(20°)+1+sin(20°)−2–√sin(65°)
Using 65 = 45 + 20
Using sin(65)=sin(45).cos(20)+cos(45).sin(20)
⟹cos(20°)+1+sin(20°)−(sin(45°).cos(20°)+cos(45°).sin(20°))
⟹cos(20°)+1+sin(20°)−cos(20°)−sin(20°)
⟹1
Answered by
3
Answer:
We have,
sin (45° + θ) – cos (45°–θ)
= sin (45° + θ) - sin (90° -(45° - θ))
= sin (45° + θ) - sin (45° + θ)
= 0.
I hope this answer are helpful for your mate. Thanks!
Similar questions