Math, asked by proveit00123, 1 month ago

The value of cos 20°+2 sin^2 55° - root 2 sin 65° is​

Answers

Answered by ZaraAntisera
0

Answer:

\mathrm{Least\:Common\:Multiplier\:of}\:\cos \left(20^{\circ \:}\right)+2\sin ^2\left(55^{\circ \:}\right)-,\:2\sin \left(65^{\circ \:}\right):\quad 2\sin \left(65^{\circ

\:}\right)\left(2\sin ^2\left(55^{\circ \:}\right)+\cos \left(20^{\circ \:}\right)\right)

Step-by-step explanation:

\cos \left(20^{\circ \:}\right)+2\sin ^2\left(55^{\circ \:}\right)-,\:2\sin \left(65^{\circ \:}\right)

\mathrm{Compute\:an\:expression\:comprised\:of\:factors\:that\:appear\:either\:in\:}\cos \left(20^{\circ \:}\right)+2\sin ^2\left(55^{\circ \:}\right)\mathrm{\:or\:}2\sin \left(65^{\circ \:}\right)

=2\sin \left(65^{\circ \:}\right)\left(2\sin ^2\left(55^{\circ \:}\right)+\cos \left(20^{\circ \:}\right)\right)

Similar questions