Math, asked by dravid749, 3 months ago

The value of cos 30x cos 60 + sin 30 x sin 60 =

Answers

Answered by Sheetal9650
3

Answer:

We know that

cos 60= 1/2

cos 30= √3/2

sin 60= √3/2

sin 30=1/2

Substituting all the values in the given equation we get

1/2 + √3/2 + √3/2 + 1/2

= √3/4 + √3/4

= 2√3/4

= √3/2

Answer

cos 60∘× cos 30∘+sin 60∘× sin30∘= √3/2

Answered by sharanyalanka7
2

Answer:

\sf\dfrac{\sqrt{3}}{2}

Step-by-step explanation:

Given,

\sf cos30\degree\times cos60\degree + sin30\degree\times sin60\degree

Solution :-

Method 1 :-

cos30\degree = \dfrac{\sqrt{3}}{2}

cos60\degree = \dfrac{1}{2}

sin30\degree = \dfrac{1}{2}

sin60\degree = \dfrac{\sqrt{3}}{2}

= \dfrac{\sqrt{3}}{2}\times \dfrac{1}{2} + \dfrac{1}{2}\times \dfrac{\sqrt{3}}{2}

= \dfrac{\sqrt{3}}{4} + \dfrac{\sqrt{3}}{4}

= \dfrac{\sqrt{3} + \sqrt{3}}{4}

= \dfrac{2\sqrt{3}}{4}

= \dfrac{\sqrt{3}}{2}

Method 2 :-

cosAcosB + sinAsinB = cos(A - B)

\sf cos30\degree\times cos60\degree + sin30\degree\times sin60\degree = cos(30 - 60)

= \sf cos(-30\degree)

= \sf cos30\degree

= \sf\dfrac{\sqrt{3}}{2}

Similar questions