Math, asked by RehanAhmadXLX, 1 year ago

The value of cos^4 θ+sin^4 θ+2cos^2 θ sin^2 θ when θ=45∘ is

A) 1

B) 2

C) 1/√2

D) 2√2

Answers

Answered by Swarup1998
6
➡HERE IS YOUR ANSWER⬇

Now,

♧♧Solution♧♧

Process 1 :::

 {cos}^{4}  \alpha  +  {sin}^{4}  \alpha  + 2 {sin}^{2}  \alpha  \:  {cos}^{2}  \alpha  \\  \\  =  {( {sin}^{2}  \alpha  +  {cos}^{2}  \alpha })^{2}  \\  \\  =  {1}^{2}  \\  \\  = 1

Process 2 :::

 {cos}^{4}  \alpha  +  {sin}^{4}  \alpha  + 2 {sin}^{2}  \alpha  \:  {cos}^{2}  \alpha \\  \\  =  {(cos45)}^{4}  +  {(sin45)}^{4}  + 2 {(sin45)}^{2}  {(cos45)}^{2}  \\  \\  =   {( \frac{1}{ \sqrt{2} }) }^{4}  +  {( \frac{1}{ \sqrt{2} }) }^{4}  + 2 {( \frac{1}{ \sqrt{2} }) }^{2}  {( \frac{1}{ \sqrt{2} }) }^{2}  \\  \\  (since \:  \: sin45 = cos45 =   \frac{1}{ \sqrt{2} })  \\  \\  =  \frac{1}{4}  +  \frac{1}{4}  + \frac{2}{4}  \\  \\  =  \frac{1 + 1 + 2}{4}  \\  \\  =  \frac{4}{4}  \\  \\  = 1

♧♧FORMULA USED♧♧

 {sin}^{2}  \alpha  +  {cos}^{2}  \alpha  = 1 \\  \\  {(x + y)}^{2}  =  {x}^{2}  + 2xy +  {y}^{2}

⬆HOPE THIS HELPS YOU⬅
Answered by TheKnowledge
3
Hey brother!!!



here your solution with this attachment :-






hence Option number "A" is correct!!!





hope it helps:D



thanks
Attachments:
Similar questions