The value of cos 4A - cos 4B is
(cos A - cos B)*(cos A + cos B)*(cos A - sin B)*(cos A + sin B)
2(cos A - cos B)*(cos A + cos B)*(cos A - sin B)*(cos A + sin B)
4(cos A - cos B)*(cos A + cos B)*(cos A - sin B)*(cos A + sin B)
8(cos A - cos B)*(cos A + cos B)*(cos A - sin B)*(cos A + sin B)
Answers
Answered by
3
Given, cos 4A - cos 4B
= 2cos2 2A - 1 - (2cos2 2B - 1) {since 2cos2 x - 1 = cos 2x}
= 2cos2 2A - 1 - 2cos2 2B + 1
= 2cos2 2A - 2cos2 2B
= 2(cos2 2A - cos2 2B)
= 2(cos 2A - cos 2B) * (cos 2A + cos 2B)
= 2{2cos2 A - 1 - (2cos2 B - 1)} * {2cos2 A - 1 + 1 - 2sin2 B} {since 1 - 2sin2 x = cos 2x}
= 2{2cos2 A - 1 - 2cos2 B + 1} * {2cos2 A - 1 + 1 - 2sin2 B}
= 2{2cos2 A - 2cos2 B} * {2cos2 A - 2sin2 B}
= 2*2*2{cos2 A - cos2 B} * {cos2 A - sin2 B}
= 8(cos A - cos B)*(cos A + cos B)*(cos A - sin B)*(cos A + sin B)
So, cos 4A - cos 4B = 8(cos A - cos B)*(cos A + cos B)*(cos A - sin B)*(cos A + sin B)
Answered by
2
Explanation:
hope it helps you
have a great day
Attachments:
Similar questions