Math, asked by kichukichuzz87, 1 year ago

The value of cos(60+2A)÷cos 2A-√3 sin 2A

Answers

Answered by Anonymous
8

Answer:

\huge\bold\red{\frac{1}{2}}

Step-by-step explanation:

For simplicity, let's denote angle A as

\bold{alpha \: ( \alpha )}

Now, we have to find the value of,

 \frac{ \cos(60 + 2 \alpha ) }{ \cos(2 \alpha )  -  \sqrt{3}  \sin(2 \alpha ) }

But, we know that,

cos (A+B) = cosA cosB - sinA sinB

therefore, using this identity,

we get,

  = \frac{ \cos(60) \cos(2 \alpha )   -  \sin(60)  \sin(2 \alpha ) }{ \cos(2 \alpha ) -  \sqrt{3} \sin(2 \alpha )   }

Putting the value of,

\bold{cos60=\frac{1}{2}\:and\:sin60=\frac{\sqrt{3}}{2}}

we get,

  = \frac{ \frac{ \cos(2 \alpha ) }{2}  -  \frac{ \sqrt{3} \sin(2 \alpha )  }{2} }{ \cos(2 \alpha ) -  \sqrt{3} sin(2 \alpha)  }  \\  \\  =  \frac{1}{2 }  \times  \frac{ \cos(2 \alpha )  -  \sqrt{3}  \sin(2 \alpha ) }{ \cos(2 \alpha ) -  \sqrt{3}  \sin(2 \alpha )  }   \\  \\  =  \frac{1}{2}

Similar questions