Math, asked by radhikamounika28, 7 months ago

The value of cos 78degrees cos 12 degrees - sin 27 degrees cos 3 degrees is​

Answers

Answered by mathdude500
5
Please find the attachment
Attachments:
Answered by krishnaanandsynergy
0

Answer:

Using trigonometric formula of cosA cosB and sinA cosB and we can find the value of cos78\textdegree cos 12\textdegree-sin27\textdegree cos3\textdegree.

Final Answer is: cos78\textdegree cos 12\textdegree-sin27\textdegree cos3\textdegree=-\frac{1}{4}

Step-by-step explanation:

Our question in the form of  cosA cosB- sinAcosB.

So that we should the trigonometric formula for cosA cosB and sinA cosB.

Already we know the formula,

                  2cosA cosB= cos(A+B)+cos(A-B)

We need cosA cosB only. So that,

                    cosA cosB=\frac{1}{2}  [cos(A+B)+cos(A-B)]

Now we can solve cos78\textdegree cos 12\textdegree using the above formula. Here A=78\textdegree and B=12\textdegree

               cos78\textdegree cos12\textdegree=\frac{1}{2}  [cos(78\textdegree+12\textdegree)+cos(78\textdegree-12\textdegree)]  

                                     =\frac{1}{2}  [cos90\textdegree+cos66\textdegree]

Using trigonometric table, cos 90\textdegree=0.

                                     =\frac{1}{2}  [0+cos66\textdegree]

                                     =\frac{1}{2}  cos66\textdegree

and cos 66\textdegree can be written as, cos(90\textdegree - 24\textdegree).

                                     =\frac{1}{2}  cos(90\textdegree-24\textdegree)

Trigonometric formula of cos(90\textdegree - \theta) = sin \theta. That is cos(90\textdegree-24\textdegree) = sin 24\textdegree

                cos78\textdegree cos12\textdegree=\frac{1}{2}  sin24\textdegree  ------------------(1)

Similarly, next we will find sin27\textdegree cos3\textdegree. For that we use the following formula.

                    2sinA cosB= sin(A+B)+sin(A-B)

we need sinAcosB only. So that,

                      sinA cosB=\frac{1}{2} [ sin(A+B)+sin(A-B)]

Now we can solve sin27\textdegree cos3\textdegree using the above formula. Here A=27\textdegree and B=3\textdegree

                   sin27\textdegree cos3\textdegree=\frac{1}{2} [ sin(27\textdegree +3\textdegree)+sin(27\textdegree -3\textdegree)]

                                       =\frac{1}{2} [ sin30\textdegree+sin24\textdegree]

Using trigonometric table, sin30\textdegree=\frac{1}{2}.

                    sin27\textdegree cos3\textdegree=\frac{1}{2} [ \frac{1}{2} +sin24\textdegree] ------------(2)

Now subtract equation(1) and equation(2).

cos78\textdegree cos 12\textdegree-sin27\textdegree cos3\textdegree=\frac{1}{2} sin 24\textdegree-\frac{1}{2} (\frac{1}{2} +sin24\textdegree)

                                             =\frac{1}{2} [sin 24\textdegree-( \frac{1}{2} +sin24\textdegree)]

                                             =\frac{1}{2} [sin 24\textdegree- \frac{1}{2} -sin24\textdegree]

                                             =\frac{1}{2} (- \frac{1}{2} )

 cos78\textdegree cos 12\textdegree-sin27\textdegree cos3\textdegree=-\frac{1}{4}

                                           

Similar questions