the value of cos( 90 -teta) sec ( 90 -teta) tan teta divided by cosec( 90 -teta) sin( 90 -teta) cot( 90 -teta) +tan( 90 -teta) divided by cot teta is
Answers
Answer:
(cos( 90 -teta) sec ( 90 -teta) tan teta)/(cosec( 90 -teta) sin( 90 -teta) cot( 90 -teta)) + (tan( 90 -teta))/(cot teta)
1) cos( 90 -teta) = sin teta
2) sec ( 90 -teta) = cosec theta
3) cosec( 90 -teta) = sec teta
4) sin( 90 -teta) = cos teta
5) cot( 90 -teta) = tan teta
6) tan( 90 -teta) = cot teta
Substitute the values, and you will get:
((sin teta)(cosec teta)(tan teta))/((sec teta)(cos teta)(tan teta)) + ((cot teta)/(cot teta))
(The tan teta from the first fraction, and cot teta from the second fraction gets cancelled, and we get:)
((sin teta)(cosec teta))/((sec teta)(cos teta)) + 1
a) (cosec teta) = 1/(sin teta)
b) (sec teta) = 1/(cos teta)
Substitute, the values, and you will get:
((sin teta)(cos teta))/((sin teta)(cos teta)) + 1
=> 1+1 = 2