Math, asked by JatinBhoker, 24 days ago

the value of cos(sin-1 8/17) is​

Answers

Answered by syedaliabbas244702
0

Step-by-step explanation:

0.999...48

that's answer

Attachments:
Answered by senboni123456
6

Answer:

Step-by-step explanation:

We have,

\rm{cos\left(sin^{-1}\left(\dfrac{8}{17}\right)\right)}

We know,

\boxed{\rm{sin^{-1}(x)=cos^{-1}\left(\sqrt{1-{x}^{2}}\right)}}

So,

\rm{=cos\left\{cos^{-1}\left(\sqrt{1-\left(\dfrac{8}{17}\right)^2}\right)\right\}}

\rm{=cos\left\{cos^{-1}\left(\sqrt{1-\dfrac{64}{289}}\right)\right\}}

\rm{=cos\left\{cos^{-1}\left(\sqrt{\dfrac{289-64}{289}}\right)\right\}}

\rm{=cos\left\{cos^{-1}\left(\sqrt{\dfrac{225}{289}}\right)\right\}}

\rm{=cos\left\{cos^{-1}\left(\dfrac{15}{17}\right)\right\}}

\bf{Since\,\,\,\,cos\big(cos^{-1}(x)\big)=x\,,\,\,\,so\,,}

\rm{=\dfrac{15}{17}}

Similar questions