Math, asked by RewaDhavalikar, 2 months ago

the value of cos12A - cos 2A / sin 12A + sin 2A​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\dfrac{cos12A - cos2A}{sin12A  + sin2A}

We know,

\boxed{ \sf{ \:cosx - cosy =  - 2sin\bigg(\dfrac{x + y}{2} \bigg)sin\bigg(\dfrac{x - y}{2} \bigg) }}

\boxed{ \sf{ \:sinx + siny =  2sin\bigg(\dfrac{x + y}{2} \bigg)cos\bigg(\dfrac{x - y}{2} \bigg) }}

Using these two Identities, we get

\:  \: \rm= \:  \:\dfrac{ - 2sin\bigg(\dfrac{12A + 2A}{2} \bigg)sin\bigg(\dfrac{12A - 2A}{2} \bigg)}{2sin\bigg(\dfrac{12A + 2A}{2} \bigg)cos\bigg(\dfrac{12A - 2A}{2} \bigg)}

\:  \: \rm= \:  \:\dfrac{ - sin\bigg(\dfrac{14A}{2} \bigg)sin\bigg(\dfrac{10A}{2} \bigg)}{sin\bigg(\dfrac{14A}{2} \bigg)cos\bigg(\dfrac{10A}{2} \bigg)}

\:  \: \rm= \:  \:\dfrac{ -   \cancel{\: sin7A} \: sin5A}{ \cancel{sin7A} \: \:  cos5A}

\:  \: \rm= \:  \: -  \: \dfrac{sin5A}{cos5A}

\:  \: \rm= \:  \: -  \: tan5A

Hence,

\bf :\longmapsto\:\dfrac{cos12A - cos2A}{sin12A  + sin2A}  =  -  \: tan5A

Additional Information :-

\boxed{ \sf{ \:sinx - siny = 2 \: cos\bigg(\dfrac{x + y}{2} \bigg)sin\bigg(\dfrac{x - y}{2} \bigg) }}

\boxed{ \sf{ \:cosx  + cosy = 2 \: cos\bigg(\dfrac{x + y}{2} \bigg)cos\bigg(\dfrac{x - y}{2} \bigg) }}

\boxed{ \sf{2sinxcosy =  \: sin(x + y) + sin(x - y)}}

\boxed{ \sf{2cosxcosy =  \: cos(x + y) + cos(x - y)}}

\boxed{ \sf{ 2sinx \: siny\:  =  \: cos(x - y) - cos(x + y)}}

Similar questions