Math, asked by hemanji2007, 2 months ago

The value of cos2θ/1−sin2θ=​

Answers

Answered by snehaprajnaindia204
12

 \frac{cos \: 2 \alpha }{1 - sin \: 2 \alpha }  \\  \\  =  \frac{ {cos} ^{2}  \alpha \:  -  {sin}^{2}  \alpha  }{1 - 2sin \:  \alpha  \: cos \:  \alpha }  \\  \\  =   \frac{(cos \:  \alpha  - sin \:  \alpha )(cos \:  \alpha  +  \: sin \:  \alpha )}{ {cos}^{2} \alpha  +  {sin}^{2}  \alpha  - 2sin \:  \alpha  \: cos \:  \alpha  }  \\  \\    =   \frac{(cos \:  \alpha  - sin \:  \alpha )(cos \:  \alpha  +  \: sin \:  \alpha )}{ {(cos \:  \alpha  -  \: sin \:  \alpha )}^{2} } \\  \\  =  \frac{cos \:  \alpha  + sin \:  \alpha }{cos \:  \alpha  -  \: sin \:  \alpha }  \\  \\  =  \frac{1 +  \: tan \:  \alpha }{1 - tan \:  \alpha }  \\  \\  = tan \: (45 +  \alpha ) \\

Answered by MrImpeccable
8

ANSWER:

To Find:

  • Value of (cos2θ)/(1−sin2θ)

Solution:

:\longrightarrow \dfrac{\cos2\theta}{1-\sin2\theta}\\\\\text{We know that, $\cos2\theta=\cos^2\theta-\sin^2\theta$ and $\sin2\theta=2\sin\theta\cos\theta$}\\\\:\implies\dfrac{\cos^2\theta-\sin^2\theta}{1-2\sin\theta\cos\theta}\\\\\text{Also, $a^2-b^2=(a+b)(a-b)$ and $1=\sin^2\theta+\cos^2\theta$}\\\\:\implies\dfrac{(\cos\theta-\sin\theta)(\cos\theta+\sin\theta)}{\sin^2\theta+\cos^2\theta-2\sin\theta\cos\theta} \\\\:\implies\dfrac{(\cos\theta-\sin\theta)(\cos\theta+\sin\theta)}{\cos^2\theta+\sin^2\theta-2\cos\theta\sin\theta}

\text{We know that, $a^2+b^2-2ab=(a-b)^2$. So,}\\\\:\implies\dfrac{(\cos\theta-\sin\theta)(\cos\theta+\sin\theta)}{(\cos\theta-\sin\theta)^2}\\\\:\implies\dfrac{\cos\theta+\sin\theta}{\cos\theta-\sin\theta}\\\\\text{Dividing both numerator and denomimator by $\cos\theta$}\\\\\:\implies\dfrac{\dfrac{\cos\theta+\sin\theta}{\cos\theta}}{\dfrac{\cos\theta-\sin\theta}{\cos\theta}}\\\\:\implies\dfrac{\dfrac{\cos\theta}{\cos\theta}+\dfrac{\sin\theta}{\cos\theta}}{\dfrac{\cos\theta}{\cos\theta}-\dfrac{\sin\theta}{\cos\theta}}

\text{Also, $\dfrac{\sin\theta}{\cos\theta}=\tan\theta$}\\\\:\implies\dfrac{1+\tan\theta}{1-\tan\theta}\\\\:\implies\dfrac{1+\tan\theta}{1-\tan\theta\times(1)}\\\\\text{We know that, $\tan\left(\dfrac{\pi}{4}\right)=1$. So,} \\\\:\implies\dfrac{\tan\left(\dfrac{\pi}{4}\right)+\tan\theta}{1-\left(\tan\theta\times\tan\left(\dfrac{\pi}{4}\right)\right)}\\\\\text{We know that, $\dfrac{\tan A+\tan B}{1-(\tan A\times\tan B)} = \tan(A+B)$. So,}\\\\\bf{:\implies \tan\left(\dfrac{\pi}{4}+\theta\right)}

Formulae Used:

  • cos2θ = cos²θ - sin²θ
  • sin2θ = 2sinθcosθ
  • a² - b² = (a + b)(a - b)
  • 1 = sin²θ + cos²θ
  • a² + b² - 2ab = (a - b)²
  • (tanA+tanB)/(1-tanA*tanB) = tan(A + B)
Similar questions