The Value
of cos² 45° - sin^2 15 is?
Answers
Answered by
3
Answer:
Step-by-step explanation:
cos245∘−sin215∘
=cos245∘−sin2(45∘−30∘)(LHS)
We know that sin(A−B)=sinA⋅cosB−cosA⋅sinB
Therefore, LHS =cos245∘−(sin45∘⋅cos30∘−cos45∘⋅sin30∘)2
=12−(12–√×3–√2−12–√×12)2
=12−(3–√22–√−122–√)2
=12−(3–√−122–√)
= 12−((3–√−1)28)
=12−(3–√−1)28
=12−4−23–√8
=12−2−3–√4
=2−(2+3–√)4
=3–√4= RHS.
Similar questions