Math, asked by Anonymous, 4 months ago

The value of cos² x + cos² y – 2cos x × cos y × cos (x + y) is

Answers

Answered by Anonymous
9

Answer:

ur answer mate

Step-by-step explanation:

hope its helpful

Attachments:
Answered by HrishikeshSangha
5

The value of \cos ^{2} x+\cos ^{2} y-2 \cos x \cdot \cos y \cdot \cos (x+y) is \sin ^{2}(x+y).

Given:

An equation - \cos ^{2} x+\cos ^{2} y-2 \cos x \cdot \cos y \cdot \cos (x+y)

To find:

Value of \cos ^{2} x+\cos ^{2} y-2 \cos x \cdot \cos y \cdot \cos (x+y)

Solution:

\rightarrow\cos ^{2} x+\cos ^{2} y-2 \cos x \cdot \cos y \cdot \cos (x+y)$\\\\$\cos ^{2} x+1-\sin ^{2} y-2 \cos x \cdot \cos y \cdot \cos (x+y)$

1+\cos ^{2} x-\sin ^{2} y-2 \cos x \cdot \cos y \cdot \cos (x+y)$\\\\$1+\cos (x+y) \cdot \cos (x-y)-2 \cos x \cdot \cos y \cdot \cos (x+y)$\\\\$1+\cos (x+y)\{\cos (x-y)-2 \cos x \cdot \cos y\}$\\\\$1+\cos (x+y)\{\cos x \cdot \cos y-\sin x \cdot \sin y-2 \cos x \cdot \cos y\}$\\\\$1+\cos (x+y)\{-\cos x \cdot \cos y+\sin x \cdot \sin y\}$\\\\$1-\cos (x+y)\{\cos x \cdot \cos y-\sin x \sin y\}$

1-\cos (x+y) \cdot \cos (x+y) \\\\1-\cos ^{2}(x+y) \\\\\sin ^{2}(x+y)

Therefore, the value of \cos ^{2} x+\cos ^{2} y-2 \cos x \cdot \cos y \cdot \cos (x+y)$ is \sin ^{2}(x+y).

Similar questions