The value of cos3 20°-cos3 70°/sin3 70°-sin3 20° is
A. 1/2
B. 1/√2
C. 1
D. 2
Answers
Given : cos³ 20° - cos³ 70°/ sin³ 70° - sin³ 20°
solution :
cos³ 20° - cos³ 70°/ sin³ 70° - sin³ 20°
= [(cos 20° - cos 70°) (cos² 20° + cos² 70° + cos 20° cos 70°)] / [(sin 70° - sin 20°)(sin² 70° + sin² 20°+ sin 70° sin 20°
[(a³ - b³) = (a - b) (a² + b² + ab]
= [(cos (90° - 70°) - cos (90° - 20°)) (cos² (90° - 70°)+ cos² 70° + cos 20° cos 70°] / [(sin 70° - sin 20°)(sin² 70° + sin²(90° - 70°)) + sin (90° - 20° ) sin (90° - 70°)]
= (sin 70° - sin 20°)(sin² 70° + cos² 70° + cos 20° cos 70°] / [(sin 70° - sin 20°)(sin² 70° + cos ² 70°)) + cos 20° cos 70°)]
[cos (90 - θ) = sin θ , sin (90° -θ ) = cos θ]
= (1 + cos 20° cos 70°) / (1 + cos 20° cos 70°)
[sin² θ + cos² θ = 1]
= 1
cos³ 20° - cos³ 70°/ sin³ 70° - sin³ 20° = 1
Hence, the value of cos³ 20° - cos³ 70°/ sin³ 70° - sin³ 20° is 1 .
The correct option is (c) 1.
HOPE THIS ANSWER WILL HELP YOU……
Some more questions :
If , then x =
(a) 1
(b) −1
(c)2
(d)0
https://brainly.in/question/7523437
The value of is
(a)1
(b)
(c)0
(d)−1
https://brainly.in/question/7517982