Math, asked by kushagramishra52, 1 month ago

The value of cos³(π/5) + cos³(2π/5) + cos³(3π/5) + cos³(4π/5) is ..



a) 0
b) 1
c) -1
d) None​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given Trigonometric function is

\rm :\longmapsto\: {cos}^{3}\bigg[\dfrac{\pi}{5} \bigg] + {cos}^{3}\bigg[\dfrac{2\pi}{5} \bigg] + {cos}^{3}\bigg[\dfrac{3\pi}{5} \bigg] + {cos}^{3}\bigg[\dfrac{4\pi}{5} \bigg]

Now,

Consider,

\red{\rm :\longmapsto\:{cos}^{}\bigg[\dfrac{3\pi}{5} \bigg]}

 \red{ \rm \:  =  \: {cos}^{}\bigg[\pi - \dfrac{2\pi}{5} \bigg]}

We know,

\boxed{ \rm \:cos(\pi - x) =  \:  -  \: cosx}

So, using this we get

 \red{ \rm \:  =   - \: {cos}^{}\bigg[ \dfrac{2\pi}{5} \bigg]}

Hence,

\red{\rm :\longmapsto\:{cos}^{}\bigg[\dfrac{3\pi}{5} \bigg] =  - \:  {cos}^{}\bigg[\dfrac{2\pi}{5} \bigg]}

Now, Consider

\green{\rm :\longmapsto\:{cos}^{}\bigg[\dfrac{4\pi}{5} \bigg]}

 \green{ \rm \:  =  \: {cos}^{}\bigg[\pi - \dfrac{\pi}{5} \bigg]}

 \green{ \rm \:  =   - \: {cos}^{}\bigg[ \dfrac{\pi}{5} \bigg]}

Hence,

\green{\rm :\longmapsto\:{cos}^{}\bigg[\dfrac{4\pi}{5} \bigg] =  - \:  {cos}^{}\bigg[\dfrac{\pi}{5} \bigg]}

Now,

\rm :\longmapsto\: {cos}^{3}\bigg[\dfrac{\pi}{5} \bigg] + {cos}^{3}\bigg[\dfrac{2\pi}{5} \bigg] + {cos}^{3}\bigg[\dfrac{3\pi}{5} \bigg] + {cos}^{3}\bigg[\dfrac{4\pi}{5} \bigg]

can be rewritten as

\rm = \: {cos}^{3}\bigg[\dfrac{\pi}{5} \bigg] + {cos}^{3}\bigg[\dfrac{2\pi}{5} \bigg]  -  {cos}^{3}\bigg[\dfrac{2\pi}{5} \bigg]  -  {cos}^{3}\bigg[\dfrac{\pi}{5} \bigg]

\rm \:  =  \:0

Hence,

  • Option (a) is correct

Additional Information :-

\boxed{ \rm \:sin2x = 2sinxcosx}

\boxed{ \rm \:cos2x = 1 -  {2sin}^{2} x =  {2cos}^{2}x - 1 =  {cos}^{2}x -  {sin}^{2}x}

\boxed{ \rm \:tan2x =  \frac{2tanx}{1 -  {tan}^{2}x}}

\boxed{ \rm \:sin(x + y) = sinxcosy + sinycosx}

\boxed{ \rm \:sin(x  -  y) = sinxcosy  -  sinycosx}

\boxed{ \rm \:cos(x  -  y) = cosxcosy  +  sinysinx}

\boxed{ \rm \:cos(x + y) = cosxcosy -  sinysinx}

Similar questions