Math, asked by AnkitM123, 9 months ago

The value of cosec (75° + theta ) -sec(15°-theta) -tan ( 55° + theta ) +cot (35° - theta) = ?

please help me friends ​

Answers

Answered by abhi569
30

Answer:

0

Step-by-step explanation:

From properties of trigonometry:

secA = cosec(90 - A)

cotA = tan(90 - A)

Therefore,

• sec(15 - ∅) = cosec(90 - (15 - ∅))

= cosec(90 - 15 + ∅)

= cosec(75 + ∅)

sec(15 - ∅) = cosec(75 + ∅)

• cot(35 - ∅) = tan(90 - (35 - ∅))

= tan(90 - 35 + ∅)

cot(35 - ∅) = tan(55 + ∅)

Therefore,

cosec(75 + ∅) - sec(15 - ∅) - tan(55 + ∅) + cot(35 - ∅)

→ cosec(75 + ∅) - cosec(75 + ∅) - tan(55 + ∅) + tan(55 + ∅)

→ 0

Answered by anindyaadhikari13
26

 \cosec(75 \degree +  \theta)  -  \sec(15 \degree -  \theta)  -  \tan(55 \degree +  \theta)  +  \cot(35 \degree -  \theta)

 =  \cosec(90 \degree - (15 \degree -  \theta) ) -  \sec(15 \degree -  \theta)  -  \tan(90 \degree - (35 \degree  -  \theta))  -  \cot(35 \degree -  \theta)

 =  \sec(15 \degree -  \theta)  - \sec(15 \degree -  \theta) -  \cot(35 \degree -  \theta)  + \cot(35 \degree -  \theta)

 = 0 + 0

 = 0

Similar questions