Math, asked by mahilmithranks2007, 4 months ago

the value of (costheta+sintheta)²+ (costheta-sintheta)²=_______​

Answers

Answered by Anonymous
6

Solution

We Have

  \tt  :  \implies \:(cos \theta \:  + sin \theta) ^{2}  + (cos \theta \:   -  sin \theta) ^{2}

Using this identities

 \tt  :  \implies (a + b) ^{2}  =  {a}^{2}  +  {b}^{2} +  2ab \\ \tt  :  \implies (a  -  b) ^{2}  =  {a}^{2}  +  {b}^{2}   -  2ab

We get

 \tt :  \implies \: (cos ^{2} \theta+ sin^{2}  \theta + 2sin \theta cos \theta) + (cos ^{2} \theta+ sin^{2}  \theta  -  2sin \theta cos \theta)

 \tt :  \implies \: cos ^{2} \theta+ sin^{2}  \theta + \cancel{ 2sin \theta cos \theta }+ cos ^{2} \theta+ sin^{2}  \theta  -   \cancel{2sin \theta cos \theta}

 \tt :  \implies \: cos ^{2} \theta+ sin^{2}  \theta  + cos ^{2} \theta+ sin^{2}  \theta

We know that

\tt :  \implies \: cos ^{2} \theta+ sin^{2}  \theta   = 1

Using this identities we get

 \tt :  \implies \: cos ^{2} \theta+ sin^{2}  \theta  + cos ^{2} \theta+ sin^{2}  \theta

 \tt :  \implies 1 + 1

\tt :  \implies 2

Hence answer is

\tt :  \implies 2

Answered by Anonymous
8

\huge\bf\underline\pink{☆Solution☆}

\huge\bf\underline{Formulas}

\sf\orange{ (a+b)² = a²+b²+2ab}

\sf\purple{(a-b)² = a²+b²-2ab}

From Trignometric identities

\sf\pink{cos²θ+sin²θ =1}

_____________________________________________

(cosθ+sinθ)² + (cosθ- sinθ)²

= cos²θ+sin²θ+2cosθ+sinθ + cos²θ+sin²θ-2cosθ+sinθ

= (cos²θ+sin²θ)+(cos²θ+sin²θ) (Using trignometric identity)

= 1 + 1

= 2

Therefore cosθ+sinθ)² + (cosθ- sinθ)² = 2

Similar questions