The value of \frac{\cot \theta}{\cot \theta-\cot 3 \theta}+\frac{\tan \theta}{\tan \theta-\tan 3 \theta}
cotθ−cot3θ
cotθ
+
tanθ−tan3θ
tanθ
Solution:
To simplify, \frac{\cot \theta}{\cot \theta-\cot 3 \theta}+\frac{\tan \theta}{\tan \theta-\tan 3 \theta}
cotθ−cot3θ
cotθ
+
tanθ−tan3θ
tanθ
Take LCM, the equation becomes,
=\frac{[\cot \theta \times(\tan \theta-\tan 3 \theta)][\tan \theta \times(\cot \theta-\cot 3 \theta]}{(\cot \theta-\cot 3 \theta) \times(\tan \theta-\tan 3 \theta)}=
(cotθ−cot3θ)×(tanθ−tan3θ)
[cotθ×(tanθ−tan3θ)][tanθ×(cotθ−cot3θ]
=\frac{[\cot \theta \times(\tan \theta-\tan 3 \theta)][\tan \theta \times(\cot \theta-\cot 3 \theta]}{(\cot \theta \times \tan \theta)-(\cot 3 \theta \times \tan \theta)+(\cot \theta \times \tan \theta)-(\tan 3 \theta \times \cot \theta)}=
(cotθ×tanθ)−(cot3θ×tanθ)+(cotθ×tanθ)−(tan3θ×cotθ)
[cotθ×(tanθ−tan3θ)][tanθ×(cotθ−cot3θ]
Since \cot \theta \times \tan \theta=1cotθ×tanθ=1
=\frac{1-(\cot \theta \times \tan 3 \theta)+1-(\tan \theta \times \cot 3 \theta)}{(1)-(\cot 3 \theta \times \tan \theta)+(1)-(\tan 3 \theta \times \cot \theta)}=
(1)−(cot3θ×tanθ)+(1)−(tan3θ×cotθ)
1−(cotθ×tan3θ)+1−(tanθ×cot3θ)
=\frac{2-(\cot \theta \times \tan 3 \theta)-(\tan \theta \times \cot 3 \theta)}{(2)-(\cot 3 \theta \times \tan \theta)-(\tan 3 \theta \times \cot \theta)}=
(2)−(cot3θ×tanθ)−(tan3θ×cotθ)
2−(cotθ×tan3θ)−(tanθ×cot3θ)
Since numerator and denominator are equal, \frac{\cot \theta}{\cot \theta-\cot 3 \theta}+\frac{\tan \theta}{\tan \theta-\tan 3 \theta}=1
cotθ−cot3θ
cotθ
+
tanθ−tan3θ
tanθ
=1
Answers
Answered by
1
Answer:
Which class you please tell me
Step-by-step explanation:
✌✌✌✌
Similar questions