Math, asked by ashleyOP, 4 months ago

The value of gamma
(3.5) is?


A. (15√π)/8

B.(13√π)/8

C.(11√π)/8

D.8√π

Answers

Answered by MaheswariS
2

\underline{\textbf{Given:}}

\mathsf{\Gamma(3.5)}

\underline{\textbf{To find:}}

\mathsf{The\;value\;of\;\Gamma(3.5)}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{\Gamma(3.5)=\Gamma\left(\dfrac{7}{2}\right)}

\mathsf{\Gamma\left(\dfrac{7}{2}\right)=\Gamma\left(\dfrac{5}{2}+1\right)}

\mathsf{\Gamma\left(\dfrac{7}{2}\right)=\dfrac{5}{2}\,\Gamma\left(\dfrac{5}{2}\right)}

\mathsf{\Gamma\left(\dfrac{7}{2}\right)=\dfrac{5}{2}\,\Gamma\left(\dfrac{3}{2}+1\right)}

\mathsf{\Gamma\left(\dfrac{7}{2}\right)=\dfrac{5}{2}\,\dfrac{3}{2}\,\Gamma\left(\dfrac{3}{2}\right)}

\mathsf{\Gamma\left(\dfrac{7}{2}\right)=\dfrac{5}{2}\,\dfrac{3}{2}\,\Gamma\left(\dfrac{1}{2}+1\right)}

\mathsf{\Gamma\left(\dfrac{7}{2}\right)=\dfrac{5}{2}\,\dfrac{3}{2}\,\dfrac{1}{2}\,\Gamma\left(\dfrac{1}{2}\right)}

\mathsf{\Gamma\left(\dfrac{7}{2}\right)=\dfrac{5}{2}\,\dfrac{3}{2}\,\dfrac{1}{2}\,\sqrt{\pi}}

\mathsf{\Gamma\left(\dfrac{7}{2}\right)=\dfrac{15}{8}\sqrt{\pi}}

\mathsf{\Gamma\left(\dfrac{7}{2}\right)=\dfrac{15\sqrt{\pi}}{8}}

\implies\boxed{\mathsf{\Gamma(3.5)=\dfrac{15\sqrt{\pi}}{8}}}

\underline{\textbf{Answer:}}

\mathsf{Option\;(A)\;is\;correct}

\underline{\textbf{Formula used:}}

\boxed{\begin{minipage}{4cm}$\\\mathsf{(i)\;\Gamma(n+1)=n\Gamma(n)}\\\\\mathsf{(ii)\;\Gamma\left(\dfrac{1}{2}\right)=\sqrt{\pi}}\\$\end{minipage}}

Similar questions