Math, asked by mohitmy4940, 3 months ago

The value of integral -1 to 1 (x-[x])dx is

Answers

Answered by mathdude500
1

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

(1). \:  \boxed{ \blue{ \bf \:  \int \:x \: dx \:  =  \: \dfrac{ {x}^{2} }{2}  + c }}

\large\underline\purple{\bold{Solution :-  }}

\rm :\implies\:Let \: I \:  =  \: \int_{ - 1}^1 \: (x - [x] \: )dx

\rm :\implies\:I \:  =  \: \int_{ - 1}^0 \: (x - [x] \: )dx + \int_{ 0}^1 \: (x - [x] \: )dx

We know that

 \boxed{ \pink{\begin{gathered}\begin{gathered}\bf \:[x] \: = \begin{cases} &\sf{ - 1  \:  \:  \:  \:  \: \:  \: when \: x \:  \in \: [ - 1,0)} \\ &\sf{0 \:  \:  \:  \:  \: when \: x \:  \in \: [0,1)} \end{cases}\end{gathered}\end{gathered}}}

Therefore,

\rm :\implies\:I \:  = \int_{ - 1}^0 \: (x - ( - 1)\: )dx + \int_{ 0}^1 \: (x - 0 \: )dx

\rm :\implies\:I \:  = \int_{ - 1}^0 \: (x  +  1)\: )dx + \int_{ 0}^1 \: (x  \: )dx

\rm :\implies\:I =  \bigg[\dfrac{ {x}^{2} }{2}  + x \bigg]_{ - 1}^0 + \bigg[\dfrac{ {x}^{2} }{2}  \bigg]_0^1

\rm :\implies\:I = (0 + 0) - (\dfrac{1}{2}  - 1) + \dfrac{1}{2}  - 0

\rm :\implies\:I = \dfrac{1}{2}  + \dfrac{1}{2}

\rm :\implies\:I = 1

Hence,

  \large\boxed{ \blue{ \bf \:  \: \int_{ - 1}^1 \: (x - [x] \: )dx = 1}}

Similar questions