Math, asked by Navie6504, 4 days ago

The value of integral e^2z÷z-2 dz where |z| = 3 is

Answers

Answered by Anonymous
9

Question :

Evaluate \sf\oint_{c}\:\dfrac{e^{2z}\:dz}{(z-2)},where |z|= 3

Solution :

Let f(z) = e²ᶻ

Now, \sf\oint_{c}\:\dfrac{e^{2z}\:dz}{(z-2)}

\sf\oint_{c}\:\dfrac{f(z)\:dz}{(z-2)}

Since e²ᶻ is Analytic inside the circle,C : |z|=3 and a=2

Therefore, By Cauchy's integral formula :

\sf\oint_{c}\:\dfrac{f(z)\:dz}{(z-2)}=2\pi\:i\times\:f(a)

\sf=2\pi\:i(e^{2(a)})

\sf=2\pi\:i(e^{2(2)})

\sf=2\pi\:i\:e^4

Therefore, The value of \sf\oint_{c}\:\dfrac{e^{2z}\:dz}{(z-2)} is 2πie⁴.

Theory :

Cauchy's integral formula :

If f(z) is Analytic within and on a closed curve and if a is any point within C, then

\bf\oint_{c}\:\dfrac{f(z)\:dz}{(z-a)}=2\pi\:i\:f(a)

Similar questions