The value of integral xcosx^2 dx is
Answers
EXPLANATION.
⇒ ∫x. cos(x²)dx.
As we know that,
By using substitution method in this equation, we get.
Let we assume that,
⇒ x² = t.
Differentiate w.r.t x, we get.
⇒ 2xdx = dt.
⇒ x dx = dt/2.
Put the value in the equation, we get.
⇒ ∫cos(t)dt/2.
⇒ 1/2∫cos(t)dt.
⇒ 1/2 sin(t) + c.
Put the value of t = x² in the equation, we get.
⇒ 1/2 sin(x²) + c.
MORE INFORMATION.
Integration using substitution.
We have two more substitution techniques for particular type of integration.
(1) = ∫f'(x)/f(x) = ㏒ | f(x) | + c.
Proof :
Let we assume that,
⇒ f(x) = t.
Differentiate w.r.t t, we get.
⇒ dt/dx = f'(x).
⇒ dt = f'(x)dx.
Put the value in the equation, we get.
⇒ ∫dt/t.
⇒ ㏒ |t| + c.
Put the value of t = f(x) in the equation, we get.
⇒ ㏒ |f(x)| + c.
(2) = ∫f'(x). (f(x))ⁿdx = f(x)ⁿ⁺¹/n + 1 + c.
Proof :
Let we assume that,
⇒ f(x) = t.
⇒ dt/dx = f'(x).
⇒ dt = f'(x)dx.
⇒ ∫tⁿdt.
⇒ tⁿ⁺¹/n + 1 + c.
⇒ (f(x))ⁿ⁺¹/n + 1 + c.