Math, asked by lalit1232, 1 year ago

the value of integration (0-π|2)(dx/1+tan^3x)

Answers

Answered by MaheswariS
16

\text{Let }I=\int\limits^{\frac{\pi}{2}}_0\;\frac{1}{1+tan^3x}\;dx

\implies\;I=\int\limits^{\frac{\pi}{2}}_0\;\frac{1}{1+\frac{sin^3x}{cos^3x}}\;dx

\implies\;I=\int\limits^{\frac{\pi}{2}}_0\;\frac{cos^3x}{cos^3x+sin^3x}\;dx...........(1)

\text{Using the property}

\boxed{\bf\int\limits^a_0{f(x)}\,dx=\int\limits^a_0{f(a-x)}\,dx}

\implies\;I=\int\limits^{\frac{\pi}{2}}_0\;\frac{cos^3(\frac{\pi}{2}-x)}{cos^3(\frac{\pi}{2}-x)+sin^3(\frac{\pi}{2}-x)}\;dx

\implies\;I=\int\limits^{\frac{\pi}{2}}_0\;\frac{sin^3x}{sin^3x+cos^3x}\;dx

\implies\;I=\int\limits^{\frac{\pi}{2}}_0\;\frac{sin^3x}{cos^3x+sin^3x}\;dx..........(2)

\text{Adding (1) and (2), we get}

2I=\int\limits^{\frac{\pi}{2}}_0\;\frac{cos^3x}{cos^3x+sin^3x}\;dx+\int\limits^{\frac{\pi}{2}}_0\;\frac{sin^3x}{cos^3x+sin^3x}\;dx

\implies\,2I=\int\limits^{\frac{\pi}{2}}_0\;\frac{cos^3x+sin^3x}{cos^3x+sin^3x}\;dx

\implies\,2I=\int\limits^{\frac{\pi}{2}}_0\;dx

\implies\,2I=[x]\limits^{\frac{\pi}{2}}_0

\implies\,2I=\frac{\pi}{2}-0

\implies\,2I=\frac{\pi}{2}

\implies\,\boxed{\bf\,I=\frac{\pi}{4}}

Similar questions