Math, asked by mamtapraja2350, 9 months ago

the value of k for which the equation x2 - 4x +k = 0 has two distinct real roots is

Answers

Answered by nikita128
116

━━━━━━━━━━━━

\huge\bold\star\red{answer:-}

For a quadratic equation 

ax²+bx+c=0 to have equal roots, D=b2−4ac=0

∴D=b2−4ac=(−4)2−4(1)(k)=0

∴k=4

Answered by Anonymous
13

 \large \underline \mathfrak{solution}

{ \rm {x}^{2}  - 4x + k  > 0}

{ \rm{here}}

{ \rm{ {ax}^{2}  + bx + c = 0}}

{ \rm{so \:  a = 1 \: b = 4 \: c = k}}

{ \rm{ \therefore  {b}^{2}  - 4ac > 0}}

{ \rm{ substituing \: the \: value}}

{ \rm{ \to {4}^{2}  - 4.1.k > 0}}

{ \rm{ \to 16 - 4k > 0}}

{ \rm{ \to 16  > 4k }}

{ \rm{ \to  \frac{16}{4}  > k}}

{ \rm{ \to 4 > k}}

{ \rm{ \to k < 4}}

{ \rm{ \large{so \: the \: value \: is \: k < 4}}}

──────────────────────────

If for a quadratic eqation { \rm{ {ax}^{2}  + bx + c = 0}} where a, b, c are real numbers and a0, then discriminat :

(i) [tex]{ \rm{ {b}^{2} - 4ac = 0}}

when the root is real

Similar questions