English, asked by rikarastogi4252, 10 months ago

The value of 'K' for which the equations 3x-y+8=0 and 6x+ Ky= -16 represent coincident lines, is:​

Answers

Answered by Balaji098765
7

follow me....

.............

Attachments:
Answered by BloomingBud
13

\pink{\underline{\sf{Given: }}}

Two equations,

3x - y + 8 = 0

6x + Ky = -16

\blue{\underline{\sf{So,}}}

3x - y + 8 = 0 ......\red{(1)}

6x + Ky + 16 = 0 .....\red{(2)}

\green{\underline{\sf{Now,\: to\:\:be\;\:found-}}}

The value of 'K' for which the equations \red{(1)} and \red{(2)} represent coincident lines.

\blue{\underline{\tt{Here \:\:is\:\: more\:\: information -}}}

\begin{array}{| c | c | c | c |}\cline{1-4} \bf Compara& \bf Graphical & \bf Algebraic & \bf Consistency\\ \cline{4-4} \bf the\:\:ratios&\bf representation&\bf interpretation&-\\ \cline{1-4}\bf\dfrac{a_{1} }{b_{1} } \neq \dfrac{ b_{1}}{b_{2}} & \sf Intersecting\:\:lines & \sf One\:\:Solution(Unique)& \sf Consistent \\ \cline{1-4} \bf \dfrac{a_{1} }{b_{1} }=\dfrac{ b_{1}}{b_{2}}=\dfrac{c_{1}}{c_{2}}& \sf Coincident\:\:lines& \sf Infinity\:\:many\:\:solutions& \sf Consistent(dependent)\\ \cline{1-4} \bf \dfrac{a_{1} }{b_{1} }=\dfrac{ b_{1}}{b_{2}}\neq\dfrac{c_{1}}{c_{2}}&\sf Parallel\:\:lines& \bf No\:\:Solution& \sf Inconsistent\\ \cline{1-4} \end{array}

Now,

For coincident or infinity many solution we have to prove,

\boxed{\boxed{\bf \dfrac{a_{1} }{b_{1} }=\dfrac{ b_{1}}{b_{2}}=\dfrac{c_{1}}{c_{2}} }}

So,

a₁ = 3, b₁ = (-1), c₁ = 8

And

a₂ = 6, b₂ = K, c₂ = 16

so,

\bf \dfrac{a_{1} }{b_{1} }=\dfrac{ b_{1}}{b_{2}}=\dfrac{c_{1}}{c_{2}}

\implies \bf \dfrac{3 }{6 }=\dfrac{-1}{K}=\dfrac{8}{16}

\implies \bf \dfrac{1 }{2 }=\dfrac{-1}{K}=\dfrac{1}{2}

\implies \bf \dfrac{1 }{2 }=\dfrac{-1}{K}

\implies \boxed{\boxed{\bf K = (-2)}}

Hence,

For the the value \red{\boxed{-2}} = K the given equations will have coincident lines.

Similar questions