Math, asked by sumitsinghekta, 8 months ago

The value of k for which the pair of linear equations 3x+4y+5=0 and 12x+2ky+17=0 has no solution​

Answers

Answered by TheProphet
4

Solution :

We have two linear pair equations :

  • 3x + 4y + 5 = 0
  • 12x + 2ky + 17 = 0

As we know that given equations compared with by ;

\bullet\sf{a_1x + b_1y + c_1 = 0}

\bullet\sf{a_2x + b_2y + c_2 = 0}

\underline{\underline{\tt{According\:to\:the\:question\::}}}

  • 3x + 4y = -5
  • 12x + 2ky = -17

As we know that formula of the no solution;

\boxed{\bf{\frac{a_1}{a_2} =\frac{b_1}{b_2} \neq \frac{c_1}{c_2} }}

  • a1 = 3
  • b1 = 4
  • b2 = 2k
  • c1 = -5
  • c2 = -17

Now;

\longrightarrow\tt{\dfrac{a_1}{a_2} =\dfrac{b_1}{b_2} \neq \dfrac{c_1}{c_2} }

\longrightarrow\tt{\dfrac{3}{12} =\dfrac{4}{2k} \neq \dfrac{-5}{-17} }

\longrightarrow\tt{\dfrac{3}{12} =\dfrac{4}{2k} \:\:\& \:\: \dfrac{4}{2k} \neq \dfrac{-5}{-17} }

\longrightarrow\tt{\dfrac{3}{12} =\dfrac{4}{2k}}

\longrightarrow\tt{6k = 48\:\:\underbrace{\sf{cross-multiplication}}}

\longrightarrow\tt{k=\cancel{48/6}}

\longrightarrow\bf{k=8}

Thus;

The value of k will be 8 .

Similar questions